IDEAS home Printed from https://ideas.repec.org/a/spr/scient/v129y2024i7d10.1007_s11192-024-05080-6.html
   My bibliography  Save this article

Closer in time and higher correlation: disclosing the relationship between citation similarity and citation interval

Author

Listed:
  • Wei Cheng

    (Nanjing Agriculture University)

  • Dejun Zheng

    (Nanjing Agriculture University)

  • Shaoxiong Fu

    (Nanjing Agriculture University)

  • Jingfeng Cui

    (Nanjing Agriculture University)

Abstract

Investigating the intricate relationship between citation similarity and the citation interval offers vital insights for refining citation recommendation systems and enhancing citation evaluation models. This is also a new perspective for understanding citation patterns. In this study, we used the Library and Information Science (LIS) field as an example to determine and discuss the correlation between citation similarity and the citation interval. Using the methods of data collection, paper title preprocessing, text vectorization based on simCSE, calculation of citation similarity and the citation interval, and calculation of the index per citing paper, this study found the following LIS domain-based results: (i) there is a significant negative correlation between citation similarity and the citation interval, but the correlation coefficient is low. (ii) The citation intervals of the least relevant series of cited papers exhibit a more pronounced susceptibility to citation similarity than the most relevant series of cited papers. (iii) The citation intervals of the most relevant cited papers are more concentrated within 12 years and more likely to be published within the average citation interval, typically from the newer half of the cited paper list and published later within 5 years of the citation half-life. This study concludes that researchers usually pay more attention to the latest and most cutting-edge and strongly relevant existing research than to weakly relevant existing research. Continuous attention and timely incorporation of knowledge into the research direction will promote a more rapid and specialized diffusion of knowledge. These findings are influenced by the accelerated dissemination of information via Internet, heightened academic competition, and the concentration of research endeavors in specialized disciplines. This study not only contributes to the scholarly discussion of citation analysis but also lays the foundation for future exploration and understanding of citation patterns.

Suggested Citation

  • Wei Cheng & Dejun Zheng & Shaoxiong Fu & Jingfeng Cui, 2024. "Closer in time and higher correlation: disclosing the relationship between citation similarity and citation interval," Scientometrics, Springer;Akadémiai Kiadó, vol. 129(7), pages 4495-4512, July.
  • Handle: RePEc:spr:scient:v:129:y:2024:i:7:d:10.1007_s11192-024-05080-6
    DOI: 10.1007/s11192-024-05080-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11192-024-05080-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11192-024-05080-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nassiri, Isar & Masoudi-Nejad, Ali & Jalili, Mahdi & Moeini, Ali, 2013. "Normalized Similarity Index: An adjusted index to prioritize article citations," Journal of Informetrics, Elsevier, vol. 7(1), pages 91-98.
    2. Oscar Rodriguez-Prieto & Lourdes Araujo & Juan Martinez-Romo, 2019. "Discovering related scientific literature beyond semantic similarity: a new co-citation approach," Scientometrics, Springer;Akadémiai Kiadó, vol. 120(1), pages 105-127, July.
    3. Libo Sheng & Dongqing Lyu & Xuanmin Ruan & Hongquan Shen & Ying Cheng, 2023. "The association between prior knowledge and the disruption of an article," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(8), pages 4731-4751, August.
    4. Messeni Petruzzelli, Antonio & Ardito, Lorenzo & Savino, Tommaso, 2018. "Maturity of knowledge inputs and innovation value: The moderating effect of firm age and size," Journal of Business Research, Elsevier, vol. 86(C), pages 190-201.
    5. Monachary Kammari & Durga Bhavani S, 2023. "Time-stamp based network evolution model for citation networks," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(6), pages 3723-3741, June.
    6. Werner Marx & Lutz Bornmann & Andreas Barth & Loet Leydesdorff, 2014. "Detecting the historical roots of research fields by reference publication year spectroscopy (RPYS)," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 65(4), pages 751-764, April.
    7. Regina Negri Pagani & João Luiz Kovaleski & Luis Mauricio Resende, 2015. "Methodi Ordinatio: a proposed methodology to select and rank relevant scientific papers encompassing the impact factor, number of citation, and year of publication," Scientometrics, Springer;Akadémiai Kiadó, vol. 105(3), pages 2109-2135, December.
    8. Chaomei Chen, 2006. "CiteSpace II: Detecting and visualizing emerging trends and transient patterns in scientific literature," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 57(3), pages 359-377, February.
    9. Jacob B. Slyder & Beth R. Stein & Brent S. Sams & David M. Walker & B. Jacob Beale & Jeffrey J. Feldhaus & Carolyn A. Copenheaver, 2011. "Citation pattern and lifespan: a comparison of discipline, institution, and individual," Scientometrics, Springer;Akadémiai Kiadó, vol. 89(3), pages 955-966, December.
    10. Bornmann, Lutz & Tekles, Alexander & Zhang, Helena H. & Ye, Fred Y., 2019. "Do we measure novelty when we analyze unusual combinations of cited references? A validation study of bibliometric novelty indicators based on F1000Prime data," Journal of Informetrics, Elsevier, vol. 13(4).
    11. Yonghe Lu & Meilu Yuan & Jiaxin Liu & Minghong Chen, 2023. "Research on semantic representation and citation recommendation of scientific papers with multiple semantics fusion," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(2), pages 1367-1393, February.
    12. Zhang, Xinyuan & Xie, Qing & Song, Min, 2021. "Measuring the impact of novelty, bibliometric, and academic-network factors on citation count using a neural network," Journal of Informetrics, Elsevier, vol. 15(2).
    13. Yang, Alex J., 2024. "Unveiling the impact and dual innovation of funded research," Journal of Informetrics, Elsevier, vol. 18(1).
    14. Lutz Bornmann & Robin Haunschild & Loet Leydesdorff, 2018. "Reference publication year spectroscopy (RPYS) of Eugene Garfield’s publications," Scientometrics, Springer;Akadémiai Kiadó, vol. 114(2), pages 439-448, February.
    15. Dag W. Aksnes & Liv Langfeldt & Paul Wouters, 2019. "Citations, Citation Indicators, and Research Quality: An Overview of Basic Concepts and Theories," SAGE Open, , vol. 9(1), pages 21582440198, February.
    16. Munui Kim & Injun Baek & Min Song, 2018. "Topic diffusion analysis of a weighted citation network in biomedical literature," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 69(2), pages 329-342, February.
    17. Thor, Andreas & Marx, Werner & Leydesdorff, Loet & Bornmann, Lutz, 2016. "Introducing CitedReferencesExplorer (CRExplorer): A program for reference publication year spectroscopy with cited references standardization," Journal of Informetrics, Elsevier, vol. 10(2), pages 503-515.
    18. Chanathip Pornprasit & Xin Liu & Pattararat Kiattipadungkul & Natthawut Kertkeidkachorn & Kyoung-Sook Kim & Thanapon Noraset & Saeed-Ul Hassan & Suppawong Tuarob, 2022. "Enhancing citation recommendation using citation network embedding," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(1), pages 233-264, January.
    19. Zafar Ali & Guilin Qi & Pavlos Kefalas & Shah Khusro & Inayat Khan & Khan Muhammad, 2022. "SPR-SMN: scientific paper recommendation employing SPECTER with memory network," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(11), pages 6763-6785, November.
    20. Yunxue Cui & Yongzhen Wang & Xiaozhong Liu & Xianwen Wang & Xuhong Zhang, 2023. "Multidimensional scholarly citations: Characterizing and understanding scholars' citation behaviors," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 74(1), pages 115-127, January.
    21. Smith, Thomas Bryan & Vacca, Raffaele & Krenz, Till & McCarty, Christopher, 2021. "Great minds think alike, or do they often differ? Research topic overlap and the formation of scientific teams," Journal of Informetrics, Elsevier, vol. 15(1).
    22. Chen, Lixin, 2017. "Do patent citations indicate knowledge linkage? The evidence from text similarities between patents and their citations," Journal of Informetrics, Elsevier, vol. 11(1), pages 63-79.
    23. Liang, Guoqiang & Hou, Haiyan & Ding, Ying & Hu, Zhigang, 2020. "Knowledge recency to the birth of Nobel Prize-winning articles: Gender, career stage, and country," Journal of Informetrics, Elsevier, vol. 14(3).
    24. Lee Fleming, 2001. "Recombinant Uncertainty in Technological Search," Management Science, INFORMS, vol. 47(1), pages 117-132, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jianhua Hou, 2017. "Exploration into the evolution and historical roots of citation analysis by referenced publication year spectroscopy," Scientometrics, Springer;Akadémiai Kiadó, vol. 110(3), pages 1437-1452, March.
    2. Matthieu Ballandonne & Igor Cersosimo, 2021. "A note on reference publication year spectroscopy with incomplete information," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(6), pages 4927-4939, June.
    3. Xin Li & Qiang Yao & Xuli Tang & Qian Li & Mengjia Wu, 2020. "How to investigate the historical roots and evolution of research fields in China? A case study on iMetrics using RootCite," Scientometrics, Springer;Akadémiai Kiadó, vol. 125(2), pages 1253-1274, November.
    4. Hou, Jianhua & Wang, Dongyi & Li, Jing, 2022. "A new method for measuring the originality of academic articles based on knowledge units in semantic networks," Journal of Informetrics, Elsevier, vol. 16(3).
    5. Liang, Guoqiang & Hou, Haiyan & Ding, Ying & Hu, Zhigang, 2020. "Knowledge recency to the birth of Nobel Prize-winning articles: Gender, career stage, and country," Journal of Informetrics, Elsevier, vol. 14(3).
    6. Massimo Franceschet & Giovanni Colavizza, 2020. "Quantifying the higher-order influence of scientific publications," Scientometrics, Springer;Akadémiai Kiadó, vol. 125(2), pages 951-963, November.
    7. Libo Sheng & Dongqing Lyu & Xuanmin Ruan & Hongquan Shen & Ying Cheng, 2023. "The association between prior knowledge and the disruption of an article," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(8), pages 4731-4751, August.
    8. McLevey, John & McIlroy-Young, Reid, 2017. "Introducing metaknowledge: Software for computational research in information science, network analysis, and science of science," Journal of Informetrics, Elsevier, vol. 11(1), pages 176-197.
    9. Guoqiang Liang & Ying Lou & Haiyan Hou, 2022. "Revisiting the disruptive index: evidence from the Nobel Prize-winning articles," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(10), pages 5721-5730, October.
    10. Zhichao Wang & Valentin Zelenyuk, 2021. "Performance Analysis of Hospitals in Australia and its Peers: A Systematic Review," CEPA Working Papers Series WP012021, School of Economics, University of Queensland, Australia.
    11. Hyejin Park & Han Woo Park, 2018. "Two-side face of knowledge building using scientometric analysis," Quality & Quantity: International Journal of Methodology, Springer, vol. 52(6), pages 2815-2836, November.
    12. Lutz Bornmann & Robin Haunschild & Loet Leydesdorff, 2018. "Reference publication year spectroscopy (RPYS) of Eugene Garfield’s publications," Scientometrics, Springer;Akadémiai Kiadó, vol. 114(2), pages 439-448, February.
    13. K. Brad Wray & Søren R. Paludan & Lutz Bornmann & Robin Haunschild, 2024. "Using Reference Publication Year Spectroscopy (RPYS) to analyze the research and publication culture in immunology," Scientometrics, Springer;Akadémiai Kiadó, vol. 129(6), pages 3271-3283, June.
    14. Chembessi Chedrak & Gohoungodji Paulin & Juste Rajaonson, 2023. "“A fine wine, better with age”: Circular economy historical roots and influential publications: A bibliometric analysis using Reference Publication Year Spectroscopy (RPYS)," Journal of Industrial Ecology, Yale University, vol. 27(6), pages 1593-1612, December.
    15. Werner Marx & Robin Haunschild & Bernie French & Lutz Bornmann, 2017. "Slow reception and under-citedness in climate change research: A case study of Charles David Keeling, discoverer of the risk of global warming," Scientometrics, Springer;Akadémiai Kiadó, vol. 112(2), pages 1079-1092, August.
    16. Guan, Jiancheng & Yan, Yan & Zhang, Jing Jing, 2017. "The impact of collaboration and knowledge networks on citations," Journal of Informetrics, Elsevier, vol. 11(2), pages 407-422.
    17. Andreas Thor & Lutz Bornmann & Werner Marx & Rüdiger Mutz, 2018. "Identifying single influential publications in a research field: new analysis opportunities of the CRExplorer," Scientometrics, Springer;Akadémiai Kiadó, vol. 116(1), pages 591-608, July.
    18. Keye Wu & Ziyue Xie & Jia Tina Du, 2024. "Does science disrupt technology? Examining science intensity, novelty, and recency through patent-paper citations in the pharmaceutical field," Scientometrics, Springer;Akadémiai Kiadó, vol. 129(9), pages 5469-5491, September.
    19. Robin Haunschild & Lutz Bornmann, 2022. "Reference publication year spectroscopy (RPYS) in practice: a software tutorial," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(12), pages 7253-7271, December.
    20. Jung, Sukhwan & Segev, Aviv, 2022. "DAC: Descendant-aware clustering algorithm for network-based topic emergence prediction," Journal of Informetrics, Elsevier, vol. 16(3).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:scient:v:129:y:2024:i:7:d:10.1007_s11192-024-05080-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.