IDEAS home Printed from https://ideas.repec.org/a/spr/scient/v121y2019i2d10.1007_s11192-019-03225-6.html
   My bibliography  Save this article

Citation recommendation based on citation tendency

Author

Listed:
  • Xi Chen

    (Ahu University
    Anhui University)

  • Huan-jing Zhao

    (Ahu University
    Anhui University)

  • Shu Zhao

    (Ahu University
    Anhui University)

  • Jie Chen

    (Ahu University
    Anhui University)

  • Yan-ping Zhang

    (Ahu University
    Anhui University)

Abstract

Due to the development of academic, more and more attentions are paid to citation recommendation. To solve the citation recommendation problem, researchers begin to focus on the network representation, because it fuses semantic information and structural information well. It is a big challenge that how to map articles in a heterogeneous information network into a low-dimensional space while preserving the potential associations between articles. We propose a novel citation recommendation algorithm based on citation tendency, named CIRec which learns more about the potential relationship of articles in the process of network embedding. Citation tendency means if an article can be selected as a reference, it probability satisfies some kinds of conditions. In our algorithm, five weight matrices which represent the probability of entity-to-entity migration based on citation tendency are defined to build weighted heterogeneous network first. Second, we design a biased random walk procedure which efficiently explores articles’ characteristics and citations information. Finally, the skip-gram model is used to learn the neighborhood relationship of the nodes in the walk sequence and map the nodes to the vector space. Comparing with existing state-of-the-art technique, experiment results show that our algorithm CIRec has better recall, precision, NDCG on AAN and DBLP dataset.

Suggested Citation

  • Xi Chen & Huan-jing Zhao & Shu Zhao & Jie Chen & Yan-ping Zhang, 2019. "Citation recommendation based on citation tendency," Scientometrics, Springer;Akadémiai Kiadó, vol. 121(2), pages 937-956, November.
  • Handle: RePEc:spr:scient:v:121:y:2019:i:2:d:10.1007_s11192-019-03225-6
    DOI: 10.1007/s11192-019-03225-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11192-019-03225-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11192-019-03225-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kaiwen Shi & Kan Liu & Xinyan He, 2024. "Heterogeneous hypergraph learning for literature retrieval based on citation intents," Scientometrics, Springer;Akadémiai Kiadó, vol. 129(7), pages 4167-4188, July.
    2. Chanathip Pornprasit & Xin Liu & Pattararat Kiattipadungkul & Natthawut Kertkeidkachorn & Kyoung-Sook Kim & Thanapon Noraset & Saeed-Ul Hassan & Suppawong Tuarob, 2022. "Enhancing citation recommendation using citation network embedding," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(1), pages 233-264, January.
    3. Xiaojuan Zhang & Shuqi Song & Yuping Xiong, 2024. "Personalized global citation recommendation with diversification awareness," Scientometrics, Springer;Akadémiai Kiadó, vol. 129(7), pages 3625-3657, July.
    4. Yongquan Chen & Ying Jiang & Haiyi Liu, 2023. "Analysis Method of App Software User Experience Based on Multisource Information Fusion," International Journal on Semantic Web and Information Systems (IJSWIS), IGI Global, vol. 19(1), pages 1-22, January.
    5. Jialiang Lin & Yao Yu & Jiaxin Song & Xiaodong Shi, 2022. "Detecting and analyzing missing citations to published scientific entities," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(5), pages 2395-2412, May.
    6. Chaker Jebari & Enrique Herrera-Viedma & Manuel Jesus Cobo, 2023. "Context-aware citation recommendation of scientific papers: comparative study, gaps and trends," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(8), pages 4243-4268, August.
    7. Huang ZhengWei & Min JinTao & Yang YanNi & Huang Jin & Tian Ye, 2022. "Recommendation method for academic journal submission based on doc2vec and XGBoost," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(5), pages 2381-2394, May.
    8. Zafar Ali & Irfan Ullah & Amin Khan & Asim Ullah Jan & Khan Muhammad, 2021. "An overview and evaluation of citation recommendation models," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(5), pages 4083-4119, May.
    9. Yonghe Lu & Meilu Yuan & Jiaxin Liu & Minghong Chen, 2023. "Research on semantic representation and citation recommendation of scientific papers with multiple semantics fusion," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(2), pages 1367-1393, February.

    More about this item

    Keywords

    Citation recommendation; Citation tendency; Heterogeneous information network; Network representation;
    All these keywords.

    JEL classification:

    • C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques
    • C89 - Mathematical and Quantitative Methods - - Data Collection and Data Estimation Methodology; Computer Programs - - - Other

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:scient:v:121:y:2019:i:2:d:10.1007_s11192-019-03225-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.