IDEAS home Printed from https://ideas.repec.org/a/spr/scient/v129y2024i7d10.1007_s11192-024-05057-5.html
   My bibliography  Save this article

Personalized global citation recommendation with diversification awareness

Author

Listed:
  • Xiaojuan Zhang

    (Sichuan University)

  • Shuqi Song

    (Sichuan University)

  • Yuping Xiong

    (Sichuan University)

Abstract

Citation recommendation helps researchers perform reference searching more efficiently. Traditional methods often focus separately on diversification and personalization, each with unique advantages and limitations. In this study, we propose a new citation recommendation paradigm, personalized global citation recommendation with diversification awareness (PGCR-DA), which integrates the two approaches to generate more relevant candidate citations. Our work involved two major tasks. The first task involves generating a pool of diversified candidate citations for each target paper, by using the Random Walk with Restart on a constructed heterogeneous graph to identify the first relevant citation. The remaining diversified candidates are returned by using the Maximal Marginal Relevance model, where diversified citations are obtained based on a two-dimensional, i.e., the semantic space and publication date of the paper, diversification strategy. The second task focuses on personalization, where the ranking list obtained in the first task is reranked by modeling fine-grained and dynamic user preferences, informed by the analysis of both the textual and entity space from the users’ previous publications. Preliminary experiments on the AAN and DBLP datasets verify our hypothesis that diversification and personalization can be effectively integrated through our approach. The results further demonstrate that PGCR-DA outperforms the competitive global citation recommendation methods with respect to a series of metrics.

Suggested Citation

  • Xiaojuan Zhang & Shuqi Song & Yuping Xiong, 2024. "Personalized global citation recommendation with diversification awareness," Scientometrics, Springer;Akadémiai Kiadó, vol. 129(7), pages 3625-3657, July.
  • Handle: RePEc:spr:scient:v:129:y:2024:i:7:d:10.1007_s11192-024-05057-5
    DOI: 10.1007/s11192-024-05057-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11192-024-05057-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11192-024-05057-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yonghe Lu & Meilu Yuan & Jiaxin Liu & Minghong Chen, 2023. "Research on semantic representation and citation recommendation of scientific papers with multiple semantics fusion," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(2), pages 1367-1393, February.
    2. Esra Gündoğan & Mehmet Kaya, 2022. "A novel hybrid paper recommendation system using deep learning," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(7), pages 3837-3855, July.
    3. Chanwoo Jeong & Sion Jang & Eunjeong Park & Sungchul Choi, 2020. "A context-aware citation recommendation model with BERT and graph convolutional networks," Scientometrics, Springer;Akadémiai Kiadó, vol. 124(3), pages 1907-1922, September.
    4. Zafar Ali & Irfan Ullah & Amin Ul Haq & Asim Ullah Jan & Khan Muhammad, 2021. "Correction to: An overview and evaluation of citation recommendation models," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(10), pages 8771-8771, October.
    5. Chaker Jebari & Enrique Herrera-Viedma & Manuel Jesus Cobo, 2023. "Context-aware citation recommendation of scientific papers: comparative study, gaps and trends," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(8), pages 4243-4268, August.
    6. Chanathip Pornprasit & Xin Liu & Pattararat Kiattipadungkul & Natthawut Kertkeidkachorn & Kyoung-Sook Kim & Thanapon Noraset & Saeed-Ul Hassan & Suppawong Tuarob, 2022. "Enhancing citation recommendation using citation network embedding," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(1), pages 233-264, January.
    7. Shutian Ma & Heng Zhang & Chengzhi Zhang & Xiaozhong Liu, 2021. "Chronological citation recommendation with time preference," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(4), pages 2991-3010, April.
    8. Xi Chen & Huan-jing Zhao & Shu Zhao & Jie Chen & Yan-ping Zhang, 2019. "Citation recommendation based on citation tendency," Scientometrics, Springer;Akadémiai Kiadó, vol. 121(2), pages 937-956, November.
    9. Zafar Ali & Irfan Ullah & Amin Khan & Asim Ullah Jan & Khan Muhammad, 2021. "An overview and evaluation of citation recommendation models," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(5), pages 4083-4119, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yonghe Lu & Meilu Yuan & Jiaxin Liu & Minghong Chen, 2023. "Research on semantic representation and citation recommendation of scientific papers with multiple semantics fusion," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(2), pages 1367-1393, February.
    2. Shicheng Tan & Tao Zhang & Shu Zhao & Yanping Zhang, 2023. "Self-supervised scientific document recommendation based on contrastive learning," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(9), pages 5027-5049, September.
    3. Chaker Jebari & Enrique Herrera-Viedma & Manuel Jesus Cobo, 2023. "Context-aware citation recommendation of scientific papers: comparative study, gaps and trends," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(8), pages 4243-4268, August.
    4. Chien-chih Huang & Kuang-hua Chen, 2024. "RefCit2vec: embedding models considering references and citations for measuring document similarity," Scientometrics, Springer;Akadémiai Kiadó, vol. 129(8), pages 4669-4693, August.
    5. Kaiwen Shi & Kan Liu & Xinyan He, 2024. "Heterogeneous hypergraph learning for literature retrieval based on citation intents," Scientometrics, Springer;Akadémiai Kiadó, vol. 129(7), pages 4167-4188, July.
    6. Chanathip Pornprasit & Xin Liu & Pattararat Kiattipadungkul & Natthawut Kertkeidkachorn & Kyoung-Sook Kim & Thanapon Noraset & Saeed-Ul Hassan & Suppawong Tuarob, 2022. "Enhancing citation recommendation using citation network embedding," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(1), pages 233-264, January.
    7. Chi Jiang & Xiao Ma & Jiangfeng Zeng & Yin Zhang & Tingting Yang & Qiumiao Deng, 2023. "TAPRec: time-aware paper recommendation via the modeling of researchers’ dynamic preferences," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(6), pages 3453-3471, June.
    8. Jialiang Lin & Yao Yu & Jiaxin Song & Xiaodong Shi, 2022. "Detecting and analyzing missing citations to published scientific entities," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(5), pages 2395-2412, May.
    9. Hei-Chia Wang & Jen-Wei Cheng & Che-Tsung Yang, 2022. "SentCite: a sentence-level citation recommender based on the salient similarity among multiple segments," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(5), pages 2521-2546, May.
    10. Zafar Ali & Guilin Qi & Pavlos Kefalas & Shah Khusro & Inayat Khan & Khan Muhammad, 2022. "SPR-SMN: scientific paper recommendation employing SPECTER with memory network," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(11), pages 6763-6785, November.
    11. Wei Cheng & Dejun Zheng & Shaoxiong Fu & Jingfeng Cui, 2024. "Closer in time and higher correlation: disclosing the relationship between citation similarity and citation interval," Scientometrics, Springer;Akadémiai Kiadó, vol. 129(7), pages 4495-4512, July.
    12. Lu Huang & Xiang Chen & Yi Zhang & Changtian Wang & Xiaoli Cao & Jiarun Liu, 2022. "Identification of topic evolution: network analytics with piecewise linear representation and word embedding," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(9), pages 5353-5383, September.
    13. Antonina Dattolo & Marco Corbatto, 2022. "Assisting researchers in bibliographic tasks: A new usable, real‐time tool for analyzing bibliographies," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 73(6), pages 757-776, June.
    14. Diego Kozlowski & Jennifer Dusdal & Jun Pang & Andreas Zilian, 2021. "Semantic and relational spaces in science of science: deep learning models for article vectorisation," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(7), pages 5881-5910, July.
    15. Khalid Haruna & Maizatul Akmar Ismail & Atika Qazi & Habeebah Adamu Kakudi & Mohammed Hassan & Sanah Abdullahi Muaz & Haruna Chiroma, 2020. "Research paper recommender system based on public contextual metadata," Scientometrics, Springer;Akadémiai Kiadó, vol. 125(1), pages 101-114, October.
    16. Choi, Seokkyu & Lee, Hyeonju & Park, Eunjeong & Choi, Sungchul, 2022. "Deep learning for patent landscaping using transformer and graph embedding," Technological Forecasting and Social Change, Elsevier, vol. 175(C).
    17. Orzechowski, Kamil P. & Mrowinski, Maciej J. & Fronczak, Agata & Fronczak, Piotr, 2023. "Asymmetry of social interactions and its role in link predictability: The case of coauthorship networks," Journal of Informetrics, Elsevier, vol. 17(2).
    18. Tianshuang Qiu & Chuanming Yu & Yunci Zhong & Lu An & Gang Li, 2021. "A scientific citation recommendation model integrating network and text representations," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(11), pages 9199-9221, November.
    19. Yongquan Chen & Ying Jiang & Haiyi Liu, 2023. "Analysis Method of App Software User Experience Based on Multisource Information Fusion," International Journal on Semantic Web and Information Systems (IJSWIS), IGI Global, vol. 19(1), pages 1-22, January.
    20. Huang ZhengWei & Min JinTao & Yang YanNi & Huang Jin & Tian Ye, 2022. "Recommendation method for academic journal submission based on doc2vec and XGBoost," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(5), pages 2381-2394, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:scient:v:129:y:2024:i:7:d:10.1007_s11192-024-05057-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.