IDEAS home Printed from https://ideas.repec.org/a/spr/sankhb/v80y2018i2d10.1007_s13571-017-0143-0.html
   My bibliography  Save this article

Testing Composite Hypothesis Based on the Density Power Divergence

Author

Listed:
  • A. Basu

    (Indian Statistical Institute)

  • A. Mandal

    (Wayne State University)

  • N. Martin

    (Complutense University of Madrid)

  • L. Pardo

    (Complutense University of Madrid)

Abstract

In any parametric inference problem, the robustness of the procedure is a real concern. A procedure which retains a high degree of efficiency under the model and simultaneously provides stable inference under data contamination is preferable in any practical situation over another procedure which achieves its efficiency at the cost of robustness or vice versa. The density power divergence family of Basu et al. (Biometrika 85, 549–559 1998) provides a flexible class of divergences where the adjustment between efficiency and robustness is controlled by a single parameter β. In this paper we consider general tests of parametric hypotheses based on the density power divergence. We establish the asymptotic null distribution of the test statistic and explore its asymptotic power function. Numerical results illustrate the performance of the theory developed.

Suggested Citation

  • A. Basu & A. Mandal & N. Martin & L. Pardo, 2018. "Testing Composite Hypothesis Based on the Density Power Divergence," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 80(2), pages 222-262, November.
  • Handle: RePEc:spr:sankhb:v:80:y:2018:i:2:d:10.1007_s13571-017-0143-0
    DOI: 10.1007/s13571-017-0143-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13571-017-0143-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13571-017-0143-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. J.J. Dik & M.C.M. de Gunst, 1985. "The Distribution Of General Quadratic Forms In Norma," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 39(1), pages 14-26, March.
    2. Toma, Aida & Broniatowski, Michel, 2011. "Dual divergence estimators and tests: Robustness results," Journal of Multivariate Analysis, Elsevier, vol. 102(1), pages 20-36, January.
    3. White, Halbert, 1982. "Maximum Likelihood Estimation of Misspecified Models," Econometrica, Econometric Society, vol. 50(1), pages 1-25, January.
    4. Martín, N. & Balakrishnan, N., 2013. "Hypothesis testing in a generic nesting framework for general distributions," Journal of Multivariate Analysis, Elsevier, vol. 118(C), pages 1-23.
    5. Robert B. Davies, 1980. "The Distribution of a Linear Combination of χ2 Random Variables," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 29(3), pages 323-333, November.
    6. Toma, Aida & Leoni-Aubin, Samuela, 2010. "Robust tests based on dual divergence estimators and saddlepoint approximations," Journal of Multivariate Analysis, Elsevier, vol. 101(5), pages 1143-1155, May.
    7. Ghosh, Abhik & Basu, Ayanendranath, 2016. "Testing composite null hypotheses based on S-divergences," Statistics & Probability Letters, Elsevier, vol. 114(C), pages 38-47.
    8. A. Basu & A. Mandal & N. Martin & L. Pardo, 2013. "Testing statistical hypotheses based on the density power divergence," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 65(2), pages 319-348, April.
    9. A. Basu & A. Mandal & N. Martin & L. Pardo, 2015. "Robust tests for the equality of two normal means based on the density power divergence," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 78(5), pages 611-634, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Abhijit Mandal & Beste Hamiye Beyaztas & Soutir Bandyopadhyay, 2023. "Robust density power divergence estimates for panel data models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 75(5), pages 773-798, October.
    2. Basu, Ayanendranath & Chakraborty, Soumya & Ghosh, Abhik & Pardo, Leandro, 2022. "Robust density power divergence based tests in multivariate analysis: A comparative overview of different approaches," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
    3. Ángel Felipe & María Jaenada & Pedro Miranda & Leandro Pardo, 2023. "Restricted Distance-Type Gaussian Estimators Based on Density Power Divergence and Their Applications in Hypothesis Testing," Mathematics, MDPI, vol. 11(6), pages 1-41, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Basu, Ayanendranath & Chakraborty, Soumya & Ghosh, Abhik & Pardo, Leandro, 2022. "Robust density power divergence based tests in multivariate analysis: A comparative overview of different approaches," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
    2. Ghosh, Abhik & Mandal, Abhijit & Martín, Nirian & Pardo, Leandro, 2016. "Influence analysis of robust Wald-type tests," Journal of Multivariate Analysis, Elsevier, vol. 147(C), pages 102-126.
    3. Amor Keziou & Aida Toma, 2021. "A Robust Version of the Empirical Likelihood Estimator," Mathematics, MDPI, vol. 9(8), pages 1-19, April.
    4. Ayanendranath Basu & Abhik Ghosh & Nirian Martin & Leandro Pardo, 2018. "Robust Wald-type tests for non-homogeneous observations based on the minimum density power divergence estimator," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 81(5), pages 493-522, July.
    5. Ronchetti, Elvezio, 2020. "Accurate and robust inference," Econometrics and Statistics, Elsevier, vol. 14(C), pages 74-88.
    6. Avijit Maji & Abhik Ghosh & Ayanendranath Basu & Leandro Pardo, 2019. "Robust statistical inference based on the C-divergence family," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 71(5), pages 1289-1322, October.
    7. R. Golden, 2003. "Discrepancy Risk Model Selection Test theory for comparing possibly misspecified or nonnested models," Psychometrika, Springer;The Psychometric Society, vol. 68(2), pages 229-249, June.
    8. Ghosh, Abhik & Basu, Ayanendranath, 2016. "Testing composite null hypotheses based on S-divergences," Statistics & Probability Letters, Elsevier, vol. 114(C), pages 38-47.
    9. Chalabi, Yohan & Wuertz, Diethelm, 2012. "Portfolio optimization based on divergence measures," MPRA Paper 43332, University Library of Munich, Germany.
    10. G. Avlogiaris & A. C. Micheas & K. Zografos, 2019. "A Criterion for Local Model Selection," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 81(2), pages 406-444, December.
    11. Diaa Al Mohamad, 2018. "Towards a better understanding of the dual representation of phi divergences," Statistical Papers, Springer, vol. 59(3), pages 1205-1253, September.
    12. Aida Toma & Samuela Leoni-Aubin, 2015. "Robust Portfolio Optimization Using Pseudodistances," PLOS ONE, Public Library of Science, vol. 10(10), pages 1-26, October.
    13. Toma, Aida & Leoni-Aubin, Samuela, 2013. "Optimal robust M-estimators using Rényi pseudodistances," Journal of Multivariate Analysis, Elsevier, vol. 115(C), pages 359-373.
    14. Das, Debojyoti & Bhatia, Vaneet & Kumar, Surya Bhushan & Basu, Sankarshan, 2022. "Do precious metals hedge crude oil volatility jumps?," International Review of Financial Analysis, Elsevier, vol. 83(C).
    15. P.A.V.B. Swamy & I-Lok Chang & Jatinder S. Mehta & William H. Greene & Stephen G. Hall & George S. Tavlas, 2016. "Removing Specification Errors from the Usual Formulation of Binary Choice Models," Econometrics, MDPI, vol. 4(2), pages 1-21, June.
    16. Carlo Altavilla & Raffaella Giacomini & Giuseppe Ragusa, 2017. "Anchoring the yield curve using survey expectations," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 32(6), pages 1055-1068, September.
    17. Fernando Rios-Avila & Gustavo Canavire-Bacarreza, 2018. "Standard-error correction in two-stage optimization models: A quasi–maximum likelihood estimation approach," Stata Journal, StataCorp LP, vol. 18(1), pages 206-222, March.
    18. Sandy Fréret & Denis Maguain, 2017. "The effects of agglomeration on tax competition: evidence from a two-regime spatial panel model on French data," International Tax and Public Finance, Springer;International Institute of Public Finance, vol. 24(6), pages 1100-1140, December.
    19. Ai, Chunrong & Chen, Xiaohong, 2007. "Estimation of possibly misspecified semiparametric conditional moment restriction models with different conditioning variables," Journal of Econometrics, Elsevier, vol. 141(1), pages 5-43, November.
    20. Ayouz, Mourad K. & Remaud, Herve, 2003. "The Internationalization Determinants Of The Small Agro-Food Firms: Hypotheses And Statistical Tests," International Food and Agribusiness Management Review, International Food and Agribusiness Management Association, vol. 5(2), pages 1-27.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sankhb:v:80:y:2018:i:2:d:10.1007_s13571-017-0143-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.