IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v114y2016icp38-47.html
   My bibliography  Save this article

Testing composite null hypotheses based on S-divergences

Author

Listed:
  • Ghosh, Abhik
  • Basu, Ayanendranath

Abstract

We consider robust tests for composite null hypotheses based on the S-divergence family. The asymptotic and theoretical robustness properties of the tests are derived. An illustration is provided for the normal model.

Suggested Citation

  • Ghosh, Abhik & Basu, Ayanendranath, 2016. "Testing composite null hypotheses based on S-divergences," Statistics & Probability Letters, Elsevier, vol. 114(C), pages 38-47.
  • Handle: RePEc:eee:stapro:v:114:y:2016:i:c:p:38-47
    DOI: 10.1016/j.spl.2016.02.007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167715216000365
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spl.2016.02.007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. A. Basu & A. Mandal & N. Martin & L. Pardo, 2013. "Testing statistical hypotheses based on the density power divergence," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 65(2), pages 319-348, April.
    2. Toma, Aida & Broniatowski, Michel, 2011. "Dual divergence estimators and tests: Robustness results," Journal of Multivariate Analysis, Elsevier, vol. 102(1), pages 20-36, January.
    3. Ayanendranath Basu & Bruce Lindsay, 1994. "Minimum disparity estimation for continuous models: Efficiency, distributions and robustness," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 46(4), pages 683-705, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Basu, Ayanendranath & Chakraborty, Soumya & Ghosh, Abhik & Pardo, Leandro, 2022. "Robust density power divergence based tests in multivariate analysis: A comparative overview of different approaches," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
    2. A. Basu & A. Mandal & N. Martin & L. Pardo, 2018. "Testing Composite Hypothesis Based on the Density Power Divergence," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 80(2), pages 222-262, November.
    3. Avijit Maji & Abhik Ghosh & Ayanendranath Basu & Leandro Pardo, 2019. "Robust statistical inference based on the C-divergence family," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 71(5), pages 1289-1322, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. A. Basu & A. Mandal & N. Martin & L. Pardo, 2018. "Testing Composite Hypothesis Based on the Density Power Divergence," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 80(2), pages 222-262, November.
    2. Suparna Basu & Hon Keung Tony Ng, 2025. "A density power divergence measure to discriminate between generalized exponential and Weibull distributions," Statistical Papers, Springer, vol. 66(1), pages 1-25, February.
    3. Kang, Jiwon & Lee, Sangyeol, 2014. "Minimum density power divergence estimator for Poisson autoregressive models," Computational Statistics & Data Analysis, Elsevier, vol. 80(C), pages 44-56.
    4. Basu, Ayanendranath & Chakraborty, Soumya & Ghosh, Abhik & Pardo, Leandro, 2022. "Robust density power divergence based tests in multivariate analysis: A comparative overview of different approaches," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
    5. Ghosh, Abhik & Mandal, Abhijit & Martín, Nirian & Pardo, Leandro, 2016. "Influence analysis of robust Wald-type tests," Journal of Multivariate Analysis, Elsevier, vol. 147(C), pages 102-126.
    6. Diaa Al Mohamad, 2018. "Towards a better understanding of the dual representation of phi divergences," Statistical Papers, Springer, vol. 59(3), pages 1205-1253, September.
    7. Avijit Maji & Abhik Ghosh & Ayanendranath Basu & Leandro Pardo, 2019. "Robust statistical inference based on the C-divergence family," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 71(5), pages 1289-1322, October.
    8. Pak, Ro Jin, 1996. "Minimum Hellinger distance estimation in simple linear regression models; distribution and efficiency," Statistics & Probability Letters, Elsevier, vol. 26(3), pages 263-269, February.
    9. Arun Kumar Kuchibhotla & Somabha Mukherjee & Ayanendranath Basu, 2019. "Statistical inference based on bridge divergences," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 71(3), pages 627-656, June.
    10. Ghosh Abhik & Martin Nirian & Basu Ayanendranath & Pardo Leandro, 2018. "A New Class of Robust Two-Sample Wald-Type Tests," The International Journal of Biostatistics, De Gruyter, vol. 14(2), pages 1-29, November.
    11. Wu, Jingjing & Karunamuni, Rohana J., 2012. "Efficient Hellinger distance estimates for semiparametric models," Journal of Multivariate Analysis, Elsevier, vol. 107(C), pages 1-23.
    12. Max Wornowizki & Roland Fried, 2016. "Two-sample homogeneity tests based on divergence measures," Computational Statistics, Springer, vol. 31(1), pages 291-313, March.
    13. Amor Keziou & Aida Toma, 2021. "A Robust Version of the Empirical Likelihood Estimator," Mathematics, MDPI, vol. 9(8), pages 1-19, April.
    14. Gayen, Atin & Kumar, M. Ashok, 2021. "Projection theorems and estimating equations for power-law models," Journal of Multivariate Analysis, Elsevier, vol. 184(C).
    15. Ayanendranath Basu & Abhik Ghosh & Nirian Martin & Leandro Pardo, 2018. "Robust Wald-type tests for non-homogeneous observations based on the minimum density power divergence estimator," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 81(5), pages 493-522, July.
    16. Giovanni Saraceno & Claudio Agostinelli & Luca Greco, 2021. "Robust estimation for multivariate wrapped models," METRON, Springer;Sapienza Università di Roma, vol. 79(2), pages 225-240, August.
    17. Basu, Ayanendranath & Lindsay, Bruce G., 2004. "The iteratively reweighted estimating equation in minimum distance problems," Computational Statistics & Data Analysis, Elsevier, vol. 45(2), pages 105-124, March.
    18. Jingjing Wu & Rohana J. Karunamuni, 2018. "Efficient and robust tests for semiparametric models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 70(4), pages 761-788, August.
    19. Claudio Agostinelli & Luca Greco, 2018. "Discussion of “The power of monitoring: how to make the most of a contaminated multivariate sample” by Andrea Cerioli, Marco Riani, Anthony C. Atkinson and Aldo Corbellini," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 27(4), pages 609-619, December.
    20. Sangyeol Lee & Junmo Song, 2013. "Minimum density power divergence estimator for diffusion processes," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 65(2), pages 213-236, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:114:y:2016:i:c:p:38-47. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.