IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/43332.html
   My bibliography  Save this paper

Portfolio optimization based on divergence measures

Author

Listed:
  • Chalabi, Yohan
  • Wuertz, Diethelm

Abstract

A new portfolio selection framework is introduced where the investor seeks the allocation that is as close as possible to his "ideal" portfolio. To build such a portfolio selection framework, the f-divergence measure from information theory is used. There are many advantages to using the f-divergence measure. First, the allocation is made such that it is in agreement with the historical data set. Second, the divergence measure is a convex function, which enables the use of fast optimization algorithms. Third, the objective value of the minimum portfolio divergence measure provides an indication distance from the ideal portfolio. A statistical test can therefore be constructed from the value of the objective function. Fourth, with adequate choices of both the target distribution and the divergence measure, the objective function of the f-portfolios reduces to the expected utility function.

Suggested Citation

  • Chalabi, Yohan & Wuertz, Diethelm, 2012. "Portfolio optimization based on divergence measures," MPRA Paper 43332, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:43332
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/43332/1/MPRA_paper_43332.pdf
    File Function: original version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yuichi Kitamura & Michael Stutzer, 1997. "An Information-Theoretic Alternative to Generalized Method of Moments Estimation," Econometrica, Econometric Society, vol. 65(4), pages 861-874, July.
    2. Stutzer, Michael, 1996. "A Simple Nonparametric Approach to Derivative Security Valuation," Journal of Finance, American Finance Association, vol. 51(5), pages 1633-1652, December.
    3. Toma, Aida & Broniatowski, Michel, 2011. "Dual divergence estimators and tests: Robustness results," Journal of Multivariate Analysis, Elsevier, vol. 102(1), pages 20-36, January.
    4. Harry Markowitz, 1952. "Portfolio Selection," Journal of Finance, American Finance Association, vol. 7(1), pages 77-91, March.
    5. Robertson, John C & Tallman, Ellis W & Whiteman, Charles H, 2005. "Forecasting Using Relative Entropy," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 37(3), pages 383-401, June.
    6. Toma, Aida & Leoni-Aubin, Samuela, 2010. "Robust tests based on dual divergence estimators and saddlepoint approximations," Journal of Multivariate Analysis, Elsevier, vol. 101(5), pages 1143-1155, May.
    7. Hans Föllmer & Alexander Schied, 2002. "Convex measures of risk and trading constraints," Finance and Stochastics, Springer, vol. 6(4), pages 429-447.
    8. M. Ryan Haley & Charles Whiteman, 2008. "Generalized Safety First and a New Twist on Portfolio Performance," Econometric Reviews, Taylor & Francis Journals, vol. 27(4-6), pages 457-483.
    9. Broniatowski, Michel & Keziou, Amor, 2009. "Parametric estimation and tests through divergences and the duality technique," Journal of Multivariate Analysis, Elsevier, vol. 100(1), pages 16-36, January.
    10. De Giorgi, Enrico, 2005. "Reward-risk portfolio selection and stochastic dominance," Journal of Banking & Finance, Elsevier, vol. 29(4), pages 895-926, April.
    11. Morales, D. & Pardo, L. & Vajda, I., 1997. "Some New Statistics for Testing Hypotheses in Parametric Models, ," Journal of Multivariate Analysis, Elsevier, vol. 62(1), pages 137-168, July.
    12. Fishburn, Peter C, 1977. "Mean-Risk Analysis with Risk Associated with Below-Target Returns," American Economic Review, American Economic Association, vol. 67(2), pages 116-126, March.
    13. F. Douglas Foster & Charles H. Whiteman, 1999. "An Application of Bayesian Option Pricing to the Soybean Market," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 81(3), pages 722-727.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lassance, Nathan & Vrins, Frédéric, 2023. "Portfolio selection: A target-distribution approach," European Journal of Operational Research, Elsevier, vol. 310(1), pages 302-314.
    2. Linda Chamakh & Zoltan Szabo, 2021. "Keep it Tighter -- A Story on Analytical Mean Embeddings," Papers 2110.09516, arXiv.org, revised Nov 2024.
    3. Chamakh, Linda & Szabo, Zoltan, 2021. "Kernel minimum divergence portfolios," LSE Research Online Documents on Economics 115723, London School of Economics and Political Science, LSE Library.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Amor Keziou & Aida Toma, 2021. "A Robust Version of the Empirical Likelihood Estimator," Mathematics, MDPI, vol. 9(8), pages 1-19, April.
    2. Haley, M. Ryan & McGee, M. Kevin, 2011. ""KLICing" there and back again: Portfolio selection using the empirical likelihood divergence and Hellinger distance," Journal of Empirical Finance, Elsevier, vol. 18(2), pages 341-352, March.
    3. De Giorgi, Enrico & Hens, Thorsten & Mayer, Janos, 2011. "A note on reward-risk portfolio selection and two-fund separation," Finance Research Letters, Elsevier, vol. 8(2), pages 52-58, June.
    4. Enrico G. De Giorgi & David B. Brown & Melvyn Sim, 2010. "Dual representation of choice and aspirational preferences," University of St. Gallen Department of Economics working paper series 2010 2010-07, Department of Economics, University of St. Gallen.
    5. M. Ryan Haley & Todd B. Walker, 2010. "Alternative tilts for nonparametric option pricing," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 30(10), pages 983-1006, October.
    6. Alexander Vinel & Pavlo A. Krokhmal, 2017. "Certainty equivalent measures of risk," Annals of Operations Research, Springer, vol. 249(1), pages 75-95, February.
    7. Ronchetti, Elvezio, 2020. "Accurate and robust inference," Econometrics and Statistics, Elsevier, vol. 14(C), pages 74-88.
    8. Nakano Yumiharu, 2006. "Mean-risk optimization for index tracking," Statistics & Risk Modeling, De Gruyter, vol. 24(1/2006), pages 1-19, July.
    9. Cillo, Alessandra & Delquié, Philippe, 2014. "Mean-risk analysis with enhanced behavioral content," European Journal of Operational Research, Elsevier, vol. 239(3), pages 764-775.
    10. Cogley, Timothy & Morozov, Sergei & Sargent, Thomas J., 2005. "Bayesian fan charts for U.K. inflation: Forecasting and sources of uncertainty in an evolving monetary system," Journal of Economic Dynamics and Control, Elsevier, vol. 29(11), pages 1893-1925, November.
    11. Peter Stephensen, 2016. "Logit Scaling: A General Method for Alignment in Microsimulation models," International Journal of Microsimulation, International Microsimulation Association, vol. 9(3), pages 89-102.
    12. Georges Hübner & Thomas Lejeune, 2015. "Portfolio choice and investor preferences : A semi-parametric approach based on risk horizon," Working Paper Research 289, National Bank of Belgium.
    13. Anthonisz, Sean A., 2012. "Asset pricing with partial-moments," Journal of Banking & Finance, Elsevier, vol. 36(7), pages 2122-2135.
    14. Diaa Al Mohamad, 2018. "Towards a better understanding of the dual representation of phi divergences," Statistical Papers, Springer, vol. 59(3), pages 1205-1253, September.
    15. Toma, Aida & Leoni-Aubin, Samuela, 2013. "Optimal robust M-estimators using Rényi pseudodistances," Journal of Multivariate Analysis, Elsevier, vol. 115(C), pages 359-373.
    16. Clements, Michael P., 2016. "Long-run restrictions and survey forecasts of output, consumption and investment," International Journal of Forecasting, Elsevier, vol. 32(3), pages 614-628.
    17. Smimou, K. & Bector, C.R. & Jacoby, G., 2007. "A subjective assessment of approximate probabilities with a portfolio application," Research in International Business and Finance, Elsevier, vol. 21(2), pages 134-160, June.
    18. Basu, Ayanendranath & Chakraborty, Soumya & Ghosh, Abhik & Pardo, Leandro, 2022. "Robust density power divergence based tests in multivariate analysis: A comparative overview of different approaches," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
    19. M. Ryan Haley, 2017. "K-fold cross validation performance comparisons of six naive portfolio selection rules: how naive can you be and still have successful out-of-sample portfolio performance?," Annals of Finance, Springer, vol. 13(3), pages 341-353, August.
    20. Aida Toma & Samuela Leoni-Aubin, 2015. "Robust Portfolio Optimization Using Pseudodistances," PLOS ONE, Public Library of Science, vol. 10(10), pages 1-26, October.

    More about this item

    Keywords

    Portfolio weights modeling; Divergence measures; Dual divergence; Information theory; Minimax optimization problems;
    All these keywords.

    JEL classification:

    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C43 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Index Numbers and Aggregation
    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions
    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:43332. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.