IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v147y2016icp102-126.html
   My bibliography  Save this article

Influence analysis of robust Wald-type tests

Author

Listed:
  • Ghosh, Abhik
  • Mandal, Abhijit
  • Martín, Nirian
  • Pardo, Leandro

Abstract

We consider a robust version of the classical Wald test statistics for testing simple and composite null hypotheses for general parametric models. These test statistics are based on the minimum density power divergence estimators instead of the maximum likelihood estimators. An extensive study of their robustness properties is given though the influence functions as well as the chi-square inflation factors. It is theoretically established that the level and power of these robust tests are stable against outliers, whereas the classical Wald test breaks down. Some numerical examples confirm the validity of the theoretical results.

Suggested Citation

  • Ghosh, Abhik & Mandal, Abhijit & Martín, Nirian & Pardo, Leandro, 2016. "Influence analysis of robust Wald-type tests," Journal of Multivariate Analysis, Elsevier, vol. 147(C), pages 102-126.
  • Handle: RePEc:eee:jmvana:v:147:y:2016:i:c:p:102-126
    DOI: 10.1016/j.jmva.2016.01.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047259X16000075
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jmva.2016.01.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ronchetti, Elvezio & Trojani, Fabio, 2001. "Robust inference with GMM estimators," Journal of Econometrics, Elsevier, vol. 101(1), pages 37-69, March.
    2. Van Aelst, Stefan & Willems, Gert, 2011. "Robust and Efficient One-Way MANOVA Tests," Journal of the American Statistical Association, American Statistical Association, vol. 106(494), pages 706-718.
    3. A. Basu & A. Mandal & N. Martin & L. Pardo, 2013. "Testing statistical hypotheses based on the density power divergence," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 65(2), pages 319-348, April.
    4. Cantoni E. & Ronchetti E., 2001. "Robust Inference for Generalized Linear Models," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1022-1030, September.
    5. Toma, Aida & Leoni-Aubin, Samuela, 2010. "Robust tests based on dual divergence estimators and saddlepoint approximations," Journal of Multivariate Analysis, Elsevier, vol. 101(5), pages 1143-1155, May.
    6. Abhik Ghosh & Ayanendranath Basu, 2015. "Robust estimation for non-homogeneous data and the selection of the optimal tuning parameter: the density power divergence approach," Journal of Applied Statistics, Taylor & Francis Journals, vol. 42(9), pages 2056-2072, September.
    7. Wang, Lan & Qu, Annie, 2007. "Robust Tests in Regression Models With Omnibus Alternatives and Bounded Influence," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 347-358, March.
    8. Toma, Aida & Broniatowski, Michel, 2011. "Dual divergence estimators and tests: Robustness results," Journal of Multivariate Analysis, Elsevier, vol. 102(1), pages 20-36, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Abhijit Mandal & Beste Hamiye Beyaztas & Soutir Bandyopadhyay, 2023. "Robust density power divergence estimates for panel data models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 75(5), pages 773-798, October.
    2. Ayanendranath Basu & Abhijit Mandal & Nirian Martín & Leandro Pardo, 2019. "A Robust Wald-Type Test for Testing the Equality of Two Means from Log-Normal Samples," Methodology and Computing in Applied Probability, Springer, vol. 21(1), pages 85-107, March.
    3. Abhik Ghosh, 2022. "Robust parametric inference for finite Markov chains," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 31(1), pages 118-147, March.
    4. Ayanendranath Basu & Abhik Ghosh & Nirian Martin & Leandro Pardo, 2018. "Robust Wald-type tests for non-homogeneous observations based on the minimum density power divergence estimator," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 81(5), pages 493-522, July.
    5. Stephanie Aerts & Gentiane Haesbroeck, 2017. "Robust asymptotic tests for the equality of multivariate coefficients of variation," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 26(1), pages 163-187, March.
    6. Elżbieta Szaruga & Elżbieta Załoga, 2022. "Qualitative–Quantitative Warning Modeling of Energy Consumption Processes in Inland Waterway Freight Transport on River Sections for Environmental Management," Energies, MDPI, vol. 15(13), pages 1-21, June.
    7. Ayanendranath Basu & Abhik Ghosh & Abhijit Mandal & Nirian Martin & Leandro Pardo, 2021. "Robust Wald-type tests in GLM with random design based on minimum density power divergence estimators," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 30(3), pages 973-1005, September.
    8. Basu, Ayanendranath & Chakraborty, Soumya & Ghosh, Abhik & Pardo, Leandro, 2022. "Robust density power divergence based tests in multivariate analysis: A comparative overview of different approaches," Journal of Multivariate Analysis, Elsevier, vol. 188(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. A. Basu & A. Mandal & N. Martin & L. Pardo, 2018. "Testing Composite Hypothesis Based on the Density Power Divergence," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 80(2), pages 222-262, November.
    2. Ronchetti, Elvezio, 2020. "Accurate and robust inference," Econometrics and Statistics, Elsevier, vol. 14(C), pages 74-88.
    3. Amor Keziou & Aida Toma, 2021. "A Robust Version of the Empirical Likelihood Estimator," Mathematics, MDPI, vol. 9(8), pages 1-19, April.
    4. Ayanendranath Basu & Abhik Ghosh & Nirian Martin & Leandro Pardo, 2018. "Robust Wald-type tests for non-homogeneous observations based on the minimum density power divergence estimator," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 81(5), pages 493-522, July.
    5. Salibian-Barrera, Matias & Van Aelst, Stefan & Yohai, Víctor J., 2016. "Robust tests for linear regression models based on τ-estimates," Computational Statistics & Data Analysis, Elsevier, vol. 93(C), pages 436-455.
    6. Basu, Ayanendranath & Chakraborty, Soumya & Ghosh, Abhik & Pardo, Leandro, 2022. "Robust density power divergence based tests in multivariate analysis: A comparative overview of different approaches," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
    7. Hill, Jonathan B. & Prokhorov, Artem, 2016. "GEL estimation for heavy-tailed GARCH models with robust empirical likelihood inference," Journal of Econometrics, Elsevier, vol. 190(1), pages 18-45.
    8. Ghosh, Abhik & Basu, Ayanendranath, 2016. "Testing composite null hypotheses based on S-divergences," Statistics & Probability Letters, Elsevier, vol. 114(C), pages 38-47.
    9. Ayanendranath Basu & Abhik Ghosh & Abhijit Mandal & Nirian Martin & Leandro Pardo, 2021. "Robust Wald-type tests in GLM with random design based on minimum density power divergence estimators," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 30(3), pages 973-1005, September.
    10. Diaa Al Mohamad, 2018. "Towards a better understanding of the dual representation of phi divergences," Statistical Papers, Springer, vol. 59(3), pages 1205-1253, September.
    11. Toma, Aida & Leoni-Aubin, Samuela, 2013. "Optimal robust M-estimators using Rényi pseudodistances," Journal of Multivariate Analysis, Elsevier, vol. 115(C), pages 359-373.
    12. Cizek, P., 2009. "Generalized Methods of Trimmed Moments," Discussion Paper 2009-25, Tilburg University, Center for Economic Research.
    13. Boente, Graciela & Cao, Ricardo & González Manteiga, Wenceslao & Rodriguez, Daniela, 2013. "Testing in generalized partially linear models: A robust approach," Statistics & Probability Letters, Elsevier, vol. 83(1), pages 203-212.
    14. Chalabi, Yohan & Wuertz, Diethelm, 2012. "Portfolio optimization based on divergence measures," MPRA Paper 43332, University Library of Munich, Germany.
    15. Aida Toma & Samuela Leoni-Aubin, 2015. "Robust Portfolio Optimization Using Pseudodistances," PLOS ONE, Public Library of Science, vol. 10(10), pages 1-26, October.
    16. Friedrich, Sarah & Pauly, Markus, 2018. "MATS: Inference for potentially singular and heteroscedastic MANOVA," Journal of Multivariate Analysis, Elsevier, vol. 165(C), pages 166-179.
    17. Bianco, Ana M. & Martínez, Elena, 2009. "Robust testing in the logistic regression model," Computational Statistics & Data Analysis, Elsevier, vol. 53(12), pages 4095-4105, October.
    18. repec:cep:stiecm:/2014/572 is not listed on IDEAS
    19. La Vecchia, Davide & Camponovo, Lorenzo & Ferrari, Davide, 2015. "Robust heart rate variability analysis by generalized entropy minimization," Computational Statistics & Data Analysis, Elsevier, vol. 82(C), pages 137-151.
    20. Xu, Li-Wen, 2015. "Parametric bootstrap approaches for two-way MANOVA with unequal cell sizes and unequal cell covariance matrices," Journal of Multivariate Analysis, Elsevier, vol. 133(C), pages 291-303.
    21. Aquaro, M. & Čížek, P., 2013. "One-step robust estimation of fixed-effects panel data models," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 536-548.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:147:y:2016:i:c:p:102-126. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.