IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i6p1480-d1100666.html
   My bibliography  Save this article

Restricted Distance-Type Gaussian Estimators Based on Density Power Divergence and Their Applications in Hypothesis Testing

Author

Listed:
  • Ángel Felipe

    (Department of Statistics and Operational Research, Complutense University of Madrid, 28040 Madrid, Spain)

  • María Jaenada

    (Department of Statistics and Operational Research, Complutense University of Madrid, 28040 Madrid, Spain)

  • Pedro Miranda

    (Department of Statistics and Operational Research, Complutense University of Madrid, 28040 Madrid, Spain)

  • Leandro Pardo

    (Department of Statistics and Operational Research, Complutense University of Madrid, 28040 Madrid, Spain)

Abstract

In this paper, we introduce the restricted minimum density power divergence Gaussian estimator (MDPDGE) and study its main asymptotic properties. In addition, we examine it robustness through its influence function analysis. Restricted estimators are required in many practical situations, such as testing composite null hypotheses, and we provide in this case constrained estimators to inherent restrictions of the underlying distribution. Furthermore, we derive robust Rao-type test statistics based on the MDPDGE for testing a simple null hypothesis, and we deduce explicit expressions for some main important distributions. Finally, we empirically evaluate the efficiency and robustness of the method through a simulation study.

Suggested Citation

  • Ángel Felipe & María Jaenada & Pedro Miranda & Leandro Pardo, 2023. "Restricted Distance-Type Gaussian Estimators Based on Density Power Divergence and Their Applications in Hypothesis Testing," Mathematics, MDPI, vol. 11(6), pages 1-41, March.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:6:p:1480-:d:1100666
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/6/1480/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/6/1480/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Castilla, Elena & Zografos, Konstantinos, 2022. "On distance-type Gaussian estimation," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
    2. Basu, Ayanendranath & Chakraborty, Soumya & Ghosh, Abhik & Pardo, Leandro, 2022. "Robust density power divergence based tests in multivariate analysis: A comparative overview of different approaches," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
    3. Menendez, M. & Morales, D. & Pardo, L. & Vajda, I., 1995. "Divergence-Based Estimation and Testing of Statistical Models of Classification," Journal of Multivariate Analysis, Elsevier, vol. 54(2), pages 329-354, August.
    4. Toma, Aida & Broniatowski, Michel, 2011. "Dual divergence estimators and tests: Robustness results," Journal of Multivariate Analysis, Elsevier, vol. 102(1), pages 20-36, January.
    5. A. Basu & A. Mandal & N. Martin & L. Pardo, 2018. "Testing Composite Hypothesis Based on the Density Power Divergence," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 80(2), pages 222-262, November.
    6. F. Götze & A. Tikhomirov, 2002. "Asymptotic Distribution of Quadratic Forms and Applications," Journal of Theoretical Probability, Springer, vol. 15(2), pages 423-475, April.
    7. Ayanendranath Basu & Abhik Ghosh & Nirian Martin & Leandro Pardo, 2022. "A Robust Generalization of the Rao Test," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 40(2), pages 868-879, April.
    8. Wu, Wei Biao & Shao, Xiaofeng, 2007. "A Limit Theorem For Quadratic Forms And Its Applications," Econometric Theory, Cambridge University Press, vol. 23(5), pages 930-951, October.
    9. Cambanis, Stamatis & Huang, Steel & Simons, Gordon, 1981. "On the theory of elliptically contoured distributions," Journal of Multivariate Analysis, Elsevier, vol. 11(3), pages 368-385, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Basu, Ayanendranath & Chakraborty, Soumya & Ghosh, Abhik & Pardo, Leandro, 2022. "Robust density power divergence based tests in multivariate analysis: A comparative overview of different approaches," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
    2. Falk, Michael, 1998. "A Note on the Comedian for Elliptical Distributions," Journal of Multivariate Analysis, Elsevier, vol. 67(2), pages 306-317, November.
    3. Kume, Alfred & Hashorva, Enkelejd, 2012. "Calculation of Bayes premium for conditional elliptical risks," Insurance: Mathematics and Economics, Elsevier, vol. 51(3), pages 632-635.
    4. Jacob, P. & Suquet, Ch., 1997. "Regression and asymptotical location of a multivariate sample," Statistics & Probability Letters, Elsevier, vol. 35(2), pages 173-179, September.
    5. Tarpey, Thaddeus, 2000. "Parallel Principal Axes," Journal of Multivariate Analysis, Elsevier, vol. 75(2), pages 295-313, November.
    6. Isaac E. Cortés & Osvaldo Venegas & Héctor W. Gómez, 2022. "A Symmetric/Asymmetric Bimodal Extension Based on the Logistic Distribution: Properties, Simulation and Applications," Mathematics, MDPI, vol. 10(12), pages 1-17, June.
    7. Valdez, Emiliano A. & Chernih, Andrew, 2003. "Wang's capital allocation formula for elliptically contoured distributions," Insurance: Mathematics and Economics, Elsevier, vol. 33(3), pages 517-532, December.
    8. Preinerstorfer, David & Pötscher, Benedikt M., 2017. "On The Power Of Invariant Tests For Hypotheses On A Covariance Matrix," Econometric Theory, Cambridge University Press, vol. 33(1), pages 1-68, February.
    9. Peng Ding, 2016. "On the Conditional Distribution of the Multivariate Distribution," The American Statistician, Taylor & Francis Journals, vol. 70(3), pages 293-295, July.
    10. Wegenkittl, Stefan, 2002. "A Generalized [phi]-Divergence for Asymptotically Multivariate Normal Models," Journal of Multivariate Analysis, Elsevier, vol. 83(2), pages 288-302, November.
    11. Mittnik, Stefan, 2014. "VaR-implied tail-correlation matrices," Economics Letters, Elsevier, vol. 122(1), pages 69-73.
    12. Jonathan Raimana Chan & Thomas Huckle & Antoine Jacquier & Aitor Muguruza, 2021. "Portfolio optimisation with options," Papers 2111.12658, arXiv.org, revised Sep 2024.
    13. van Delft, Anne, 2020. "A note on quadratic forms of stationary functional time series under mild conditions," Stochastic Processes and their Applications, Elsevier, vol. 130(7), pages 4206-4251.
    14. Zhang, Tonglin, 2019. "General Gaussian estimation," Journal of Multivariate Analysis, Elsevier, vol. 169(C), pages 234-247.
    15. Lombardi, Marco J. & Veredas, David, 2009. "Indirect estimation of elliptical stable distributions," Computational Statistics & Data Analysis, Elsevier, vol. 53(6), pages 2309-2324, April.
    16. Fraiman, Ricardo & Moreno, Leonardo & Ransford, Thomas, 2023. "A Cramér–Wold theorem for elliptical distributions," Journal of Multivariate Analysis, Elsevier, vol. 196(C).
    17. Arellano-Valle, Reinaldo B., 2001. "On some characterizations of spherical distributions," Statistics & Probability Letters, Elsevier, vol. 54(3), pages 227-232, October.
    18. Villegas, Cristian & Paula, Gilberto A. & Cysneiros, Francisco José A. & Galea, Manuel, 2013. "Influence diagnostics in generalized symmetric linear models," Computational Statistics & Data Analysis, Elsevier, vol. 59(C), pages 161-170.
    19. Stöber, Jakob & Joe, Harry & Czado, Claudia, 2013. "Simplified pair copula constructions—Limitations and extensions," Journal of Multivariate Analysis, Elsevier, vol. 119(C), pages 101-118.
    20. Jamalizadeh, A. & Balakrishnan, N., 2010. "Distributions of order statistics and linear combinations of order statistics from an elliptical distribution as mixtures of unified skew-elliptical distributions," Journal of Multivariate Analysis, Elsevier, vol. 101(6), pages 1412-1427, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:6:p:1480-:d:1100666. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.