IDEAS home Printed from https://ideas.repec.org/a/eee/ecosta/v14y2020icp74-88.html
   My bibliography  Save this article

Accurate and robust inference

Author

Listed:
  • Ronchetti, Elvezio

Abstract

Classical statistical inference relies mostly on parametric models and on optimal procedures which are mostly justified by their asymptotic properties when the data generating process corresponds to the assumed model. However, models are only ideal approximations to reality and deviations from the assumed model distribution are present on real data and can invalidate standard errors, confidence intervals, and p-values based on standard classical techniques. Moreover, the distributions needed to construct these quantities cannot typically be computed exactly and first-order asymptotic theory is used to approximate them. This can lead to a lack of accuracy, especially in the tails of the distribution, which are the regions of interest for inference. The interplay between these two issues is investigated and it is shown how to construct statistical procedures which are simultaneously robust and accurate.

Suggested Citation

  • Ronchetti, Elvezio, 2020. "Accurate and robust inference," Econometrics and Statistics, Elsevier, vol. 14(C), pages 74-88.
  • Handle: RePEc:eee:ecosta:v:14:y:2020:i:c:p:74-88
    DOI: 10.1016/j.ecosta.2019.12.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S2452306220300022
    Download Restriction: Full text for ScienceDirect subscribers only. Contains open access articles

    File URL: https://libkey.io/10.1016/j.ecosta.2019.12.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lô, Serigne N. & Ronchetti, Elvezio, 2009. "Robust and accurate inference for generalized linear models," Journal of Multivariate Analysis, Elsevier, vol. 100(9), pages 2126-2136, October.
    2. Chris Field & John Robinson & Elvezio Ronchetti, 2008. "Saddlepoint approximations for multivariate M-estimates with applications to bootstrap accuracy," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 60(1), pages 205-224, March.
    3. Koenker, Roger W & Bassett, Gilbert, Jr, 1978. "Regression Quantiles," Econometrica, Econometric Society, vol. 46(1), pages 33-50, January.
    4. Ma, Yanyuan & Ronchetti, Elvezio, 2011. "Saddlepoint Test in Measurement Error Models," Journal of the American Statistical Association, American Statistical Association, vol. 106(493), pages 147-156.
    5. Ronchetti, Elvezio & Trojani, Fabio, 2001. "Robust inference with GMM estimators," Journal of Econometrics, Elsevier, vol. 101(1), pages 37-69, March.
    6. Veronika Czellar & Elvezio Ronchetti, 2010. "Accurate and Robust Tests for Indirect Inference," Post-Print hal-02313230, HAL.
    7. Aeberhard, William H. & Cantoni, Eva & Heritier, Stephane, 2017. "Saddlepoint tests for accurate and robust inference on overdispersed count data," Computational Statistics & Data Analysis, Elsevier, vol. 107(C), pages 162-175.
    8. Gallant, A. Ronald & Tauchen, George, 1996. "Which Moments to Match?," Econometric Theory, Cambridge University Press, vol. 12(4), pages 657-681, October.
    9. Guido W. Imbens & Richard H. Spady & Phillip Johnson, 1998. "Information Theoretic Approaches to Inference in Moment Condition Models," Econometrica, Econometric Society, vol. 66(2), pages 333-358, March.
    10. Veronika Czellar & Elvezio Ronchetti, 2010. "Accurate and robust tests for indirect inference," Biometrika, Biometrika Trust, vol. 97(3), pages 621-630.
    11. Camponovo, Lorenzo & Scaillet, Olivier & Trojani, Fabio, 2012. "Robust subsampling," Journal of Econometrics, Elsevier, vol. 167(1), pages 197-210.
    12. Sowell, Fallaw, 2006. "The Empirical Saddlepoint Approximation for GMM Estimators," MPRA Paper 3356, University Library of Munich, Germany, revised May 2007.
    13. Salibian-Barrera, Matias & Van Aelst, Stefan & Willems, Gert, 2006. "Principal Components Analysis Based on Multivariate MM Estimators With Fast and Robust Bootstrap," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 1198-1211, September.
    14. Yuichi Kitamura & Michael Stutzer, 1997. "An Information-Theoretic Alternative to Generalized Method of Moments Estimation," Econometrica, Econometric Society, vol. 65(4), pages 861-874, July.
    15. La Vecchia, Davide & Ronchetti, Elvezio, 2019. "Saddlepoint approximations for short and long memory time series: A frequency domain approach," Journal of Econometrics, Elsevier, vol. 213(2), pages 578-592.
    16. Kolassa, John E. & Robinson, John, 2017. "Nonparametric tests for multi-parameter M-estimators," Journal of Multivariate Analysis, Elsevier, vol. 158(C), pages 103-116.
    17. Kundhi, Gubhinder & Rilstone, Paul, 2013. "Edgeworth And Saddlepoint Expansions For Nonlinear Estimators," Econometric Theory, Cambridge University Press, vol. 29(5), pages 1057-1078, October.
    18. Chris Field & John Robinson & Elvezio Ronchetti, 2008. "Saddlepoint approximations for multivariate M-estimates with applications to bootstrap accuracy," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 60(1), pages 225-227, March.
    19. Davide La Vecchia, 2016. "Stable Asymptotics for M-estimators," International Statistical Review, International Statistical Institute, vol. 84(2), pages 267-290, August.
    20. Peracchi, Franco, 1990. "Bounded-influence estimators for the tobit model," Journal of Econometrics, Elsevier, vol. 44(1-2), pages 107-126.
    21. Veronika Czellar, 2010. "Accurate and Robust Tests for Indirect Inference," Post-Print hal-00553964, HAL.
    22. Koenker,Roger, 2005. "Quantile Regression," Cambridge Books, Cambridge University Press, number 9780521845731, September.
    23. Howard D. Bondell & Leonard A. Stefanski, 2013. "Efficient Robust Regression via Two-Stage Generalized Empirical Likelihood," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 108(502), pages 644-655, June.
    24. Susanne M. Schennach, 2007. "Point estimation with exponentially tilted empirical likelihood," Papers 0708.1874, arXiv.org.
    25. Toma, Aida & Leoni-Aubin, Samuela, 2010. "Robust tests based on dual divergence estimators and saddlepoint approximations," Journal of Multivariate Analysis, Elsevier, vol. 101(5), pages 1143-1155, May.
    26. Shinichi Sakata & Halbert White, 1998. "High Breakdown Point Conditional Dispersion Estimation with Application to S&P 500 Daily Returns Volatility," Econometrica, Econometric Society, vol. 66(3), pages 529-568, May.
    27. Kim, Young Min & Nordman, Daniel J., 2013. "A frequency domain bootstrap for Whittle estimation under long-range dependence," Journal of Multivariate Analysis, Elsevier, vol. 115(C), pages 405-420.
    28. Genton M.G. & Ronchetti E., 2003. "Robust Indirect Inference," Journal of the American Statistical Association, American Statistical Association, vol. 98, pages 67-76, January.
    29. Hill, Jonathan B. & Prokhorov, Artem, 2016. "GEL estimation for heavy-tailed GARCH models with robust empirical likelihood inference," Journal of Econometrics, Elsevier, vol. 190(1), pages 18-45.
    30. Toma, Aida & Broniatowski, Michel, 2011. "Dual divergence estimators and tests: Robustness results," Journal of Multivariate Analysis, Elsevier, vol. 102(1), pages 20-36, January.
    31. Andrew Chesher & Richard J. Smith, 1997. "Likelihood Ratio Specification Tests," Econometrica, Econometric Society, vol. 65(3), pages 627-646, May.
    32. Veronika Czellar & Elvezio Ronchetti, 2010. "Accurate and Robust Tests for Indirect Inference," Post-Print hal-00585938, HAL.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alfonso García-Pérez, 2021. "New Robust Cross-Variogram Estimators and Approximations of Their Distributions Based on Saddlepoint Techniques," Mathematics, MDPI, vol. 9(7), pages 1-21, April.
    2. Alfonso García-Pérez, 2023. "A New Estimator: Median of the Distribution of the Mean in Robustness," Mathematics, MDPI, vol. 11(12), pages 1-13, June.
    3. Javed, Farrukh & Loperfido, Nicola & Mazur, Stepan, 2024. "Edgeworth expansions for multivariate random sums," Econometrics and Statistics, Elsevier, vol. 31(C), pages 66-80.
    4. Alfonso García-Pérez, 2022. "On Robustness for Spatio-Temporal Data," Mathematics, MDPI, vol. 10(10), pages 1-17, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aeberhard, William H. & Cantoni, Eva & Heritier, Stephane, 2017. "Saddlepoint tests for accurate and robust inference on overdispersed count data," Computational Statistics & Data Analysis, Elsevier, vol. 107(C), pages 162-175.
    2. Lô, Serigne N. & Ronchetti, Elvezio, 2012. "Robust small sample accurate inference in moment condition models," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3182-3197.
    3. Lorenzo Camponovo & Taisuke Otsu, 2017. "Relative error accurate statistic based on nonparametric likelihood," STICERD - Econometrics Paper Series 593, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
    4. Camponovo, Lorenzo & Matsushita, Yukitoshi & Otsu, Taisuke, 2021. "Relative error accurate statistic based on nonparametric likelihood," LSE Research Online Documents on Economics 107521, London School of Economics and Political Science, LSE Library.
    5. Gubhinder Kundhi & Paul Rilstone, 2015. "Saddlepoint expansions for GEL estimators," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 24(1), pages 1-24, March.
    6. Calvet, Laurent E. & Czellar, Veronika, 2015. "Through the looking glass: Indirect inference via simple equilibria," Journal of Econometrics, Elsevier, vol. 185(2), pages 343-358.
    7. Anna Gottard & Giorgio Calzolari, 2014. "Alternative estimating procedures for multiple membership logit models with mixed effects: indirect inference and data cloning," Econometrics Working Papers Archive 2014_07, Universita' degli Studi di Firenze, Dipartimento di Statistica, Informatica, Applicazioni "G. Parenti".
    8. Amor Keziou & Aida Toma, 2021. "A Robust Version of the Empirical Likelihood Estimator," Mathematics, MDPI, vol. 9(8), pages 1-19, April.
    9. Calvet, Laurent-Emmanuel & Czellar , Veronika, 2011. "state-observation sampling and the econometrics of learning models," HEC Research Papers Series 947, HEC Paris.
    10. Philip Kostov, 2013. "Empirical likelihood estimation of the spatial quantile regression," Journal of Geographical Systems, Springer, vol. 15(1), pages 51-69, January.
    11. Cizek, P., 2009. "Generalized Methods of Trimmed Moments," Discussion Paper 2009-25, Tilburg University, Center for Economic Research.
    12. Ortelli, Claudio & Trojani, Fabio, 2005. "Robust efficient method of moments," Journal of Econometrics, Elsevier, vol. 128(1), pages 69-97, September.
    13. Parente, Paulo M.D.C. & Smith, Richard J., 2011. "Gel Methods For Nonsmooth Moment Indicators," Econometric Theory, Cambridge University Press, vol. 27(1), pages 74-113, February.
    14. La Vecchia, Davide & Moor, Alban & Scaillet, Olivier, 2023. "A higher-order correct fast moving-average bootstrap for dependent data," Journal of Econometrics, Elsevier, vol. 235(1), pages 65-81.
    15. Lorenzo Camponovo & Taisuke Otsu, 2015. "Robustness of Bootstrap in Instrumental Variable Regression," Econometric Reviews, Taylor & Francis Journals, vol. 34(3), pages 352-393, March.
    16. Gagliardini, Patrick & Trojani, Fabio & Urga, Giovanni, 2005. "Robust GMM tests for structural breaks," Journal of Econometrics, Elsevier, vol. 129(1-2), pages 139-182.
    17. Hill, Jonathan B. & Prokhorov, Artem, 2016. "GEL estimation for heavy-tailed GARCH models with robust empirical likelihood inference," Journal of Econometrics, Elsevier, vol. 190(1), pages 18-45.
    18. Ai, Chunrong & Linton, Oliver & Zhang, Zheng, 2022. "Estimation and inference for the counterfactual distribution and quantile functions in continuous treatment models," Journal of Econometrics, Elsevier, vol. 228(1), pages 39-61.
    19. Otsu, Taisuke & Seo, Myung Hwan & Whang, Yoon-Jae, 2012. "Testing for non-nested conditional moment restrictions using unconditional empirical likelihood," Journal of Econometrics, Elsevier, vol. 167(2), pages 370-382.
    20. Otsu, Taisuke, 2010. "On Bahadur efficiency of empirical likelihood," Journal of Econometrics, Elsevier, vol. 157(2), pages 248-256, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecosta:v:14:y:2020:i:c:p:74-88. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/econometrics-and-statistics .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.