IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v188y2022ics0047259x2100124x.html
   My bibliography  Save this article

Robust density power divergence based tests in multivariate analysis: A comparative overview of different approaches

Author

Listed:
  • Basu, Ayanendranath
  • Chakraborty, Soumya
  • Ghosh, Abhik
  • Pardo, Leandro

Abstract

Hypothesis testing is one of the fundamental paradigms of statistical inference. The three canonical hypothesis testing procedures available in the statistical literature are the likelihood ratio (LR) test, the Wald test and the Rao (score) test. All of them have good optimality properties and past research has not identified any of these three procedures to be a clear winner over the other two. However, the classical versions of these tests are based on the maximum likelihood estimator (MLE), which, although the most optimal estimator asymptotically, is known for its lack of robustness under outliers and model misspecification. In the present paper we provide an overview of the analogues of these tests based on the minimum density power divergence estimator (MDPDE), which presents us with an alternative option that is strongly robust and highly efficient. Since these tests have, so far, been mostly studied for univariate responses, here we primarily focus on their performances for several important hypothesis testing problems in the multivariate context under the multivariate normal model family.

Suggested Citation

  • Basu, Ayanendranath & Chakraborty, Soumya & Ghosh, Abhik & Pardo, Leandro, 2022. "Robust density power divergence based tests in multivariate analysis: A comparative overview of different approaches," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
  • Handle: RePEc:eee:jmvana:v:188:y:2022:i:c:s0047259x2100124x
    DOI: 10.1016/j.jmva.2021.104846
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047259X2100124X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jmva.2021.104846?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ghosh, Abhik & Mandal, Abhijit & Martín, Nirian & Pardo, Leandro, 2016. "Influence analysis of robust Wald-type tests," Journal of Multivariate Analysis, Elsevier, vol. 147(C), pages 102-126.
    2. Ghosh, Abhik & Basu, Ayanendranath, 2016. "Testing composite null hypotheses based on S-divergences," Statistics & Probability Letters, Elsevier, vol. 114(C), pages 38-47.
    3. Morales, D. & Pardo, L. & Vajda, I., 1997. "Some New Statistics for Testing Hypotheses in Parametric Models, ," Journal of Multivariate Analysis, Elsevier, vol. 62(1), pages 137-168, July.
    4. A. Basu & A. Mandal & N. Martin & L. Pardo, 2013. "Testing statistical hypotheses based on the density power divergence," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 65(2), pages 319-348, April.
    5. T. S. Breusch & A. R. Pagan, 1980. "The Lagrange Multiplier Test and its Applications to Model Specification in Econometrics," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 47(1), pages 239-253.
    6. Basu, Ayanendranath & Harris, Ian R. & Basu, Srabashi, 1996. "Tests of hypotheses in discrete models based on the penalized Hellinger distance," Statistics & Probability Letters, Elsevier, vol. 27(4), pages 367-373, May.
    7. Engle, Robert F., 1984. "Wald, likelihood ratio, and Lagrange multiplier tests in econometrics," Handbook of Econometrics, in: Z. Griliches† & M. D. Intriligator (ed.), Handbook of Econometrics, edition 1, volume 2, chapter 13, pages 775-826, Elsevier.
    8. Toma, Aida & Leoni-Aubin, Samuela, 2010. "Robust tests based on dual divergence estimators and saddlepoint approximations," Journal of Multivariate Analysis, Elsevier, vol. 101(5), pages 1143-1155, May.
    9. Toma, Aida & Broniatowski, Michel, 2011. "Dual divergence estimators and tests: Robustness results," Journal of Multivariate Analysis, Elsevier, vol. 102(1), pages 20-36, January.
    10. Lafontaine, Francine & White, Kenneth J., 1986. "Obtaining any Wald statistic you want," Economics Letters, Elsevier, vol. 21(1), pages 35-40.
    11. A. Basu & A. Mandal & N. Martin & L. Pardo, 2018. "Testing Composite Hypothesis Based on the Density Power Divergence," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 80(2), pages 222-262, November.
    12. Salicru, M. & Morales, D. & Menendez, M. L. & Pardo, L., 1994. "On the Applications of Divergence Type Measures in Testing Statistical Hypotheses," Journal of Multivariate Analysis, Elsevier, vol. 51(2), pages 372-391, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ángel Felipe & María Jaenada & Pedro Miranda & Leandro Pardo, 2023. "Restricted Distance-Type Gaussian Estimators Based on Density Power Divergence and Their Applications in Hypothesis Testing," Mathematics, MDPI, vol. 11(6), pages 1-41, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. A. Basu & A. Mandal & N. Martin & L. Pardo, 2018. "Testing Composite Hypothesis Based on the Density Power Divergence," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 80(2), pages 222-262, November.
    2. Abhijit Mandal & Beste Hamiye Beyaztas & Soutir Bandyopadhyay, 2023. "Robust density power divergence estimates for panel data models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 75(5), pages 773-798, October.
    3. Ghosh, Abhik & Mandal, Abhijit & Martín, Nirian & Pardo, Leandro, 2016. "Influence analysis of robust Wald-type tests," Journal of Multivariate Analysis, Elsevier, vol. 147(C), pages 102-126.
    4. King, Maxwell L. & Zhang, Xibin & Akram, Muhammad, 2020. "Hypothesis testing based on a vector of statistics," Journal of Econometrics, Elsevier, vol. 219(2), pages 425-455.
    5. Ayanendranath Basu & Abhik Ghosh & Nirian Martin & Leandro Pardo, 2018. "Robust Wald-type tests for non-homogeneous observations based on the minimum density power divergence estimator," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 81(5), pages 493-522, July.
    6. Chalabi, Yohan & Wuertz, Diethelm, 2012. "Portfolio optimization based on divergence measures," MPRA Paper 43332, University Library of Munich, Germany.
    7. John Geweke & Joel Horowitz & M. Hashem Pesaran, 2006. "Econometrics: A Bird’s Eye View," CESifo Working Paper Series 1870, CESifo.
    8. Martín, N. & Balakrishnan, N., 2013. "Hypothesis testing in a generic nesting framework for general distributions," Journal of Multivariate Analysis, Elsevier, vol. 118(C), pages 1-23.
    9. Yash P. Mehra, 1995. "Some key empirical determinants of short-term nominal interest rates," Economic Quarterly, Federal Reserve Bank of Richmond, issue Sum, pages 33-51.
    10. Adrian C. Darnell, 1994. "A Dictionary Of Econometrics," Books, Edward Elgar Publishing, number 118.
    11. Baltagi, Badi H. & Li, Qi, 1995. "Testing AR(1) against MA(1) disturbances in an error component model," Journal of Econometrics, Elsevier, vol. 68(1), pages 133-151, July.
    12. Brown, Kenneth & Cribari-Neto, Francisco, 1992. "On Hypothesis Testing: A Selective Look at the Lagrange Multiplier, Likelihood Ratio and Wald Tests," Brazilian Review of Econometrics, Sociedade Brasileira de Econometria - SBE, vol. 12(2), November.
    13. Ronchetti, Elvezio, 2020. "Accurate and robust inference," Econometrics and Statistics, Elsevier, vol. 14(C), pages 74-88.
    14. Gabriele Fiorentini & Enrique Sentana, 2012. "Tests for Serial Dependence in Static, Non-Gaussian Factor Models," Working Papers wp2012_1211, CEMFI.
    15. Antonio Páez & Takashi Uchida & Kazuaki Miyamoto, 2002. "A General Framework for Estimation and Inference of Geographically Weighted Regression Models: 1. Location-Specific Kernel Bandwidths and a Test for Locational Heterogeneity," Environment and Planning A, , vol. 34(4), pages 733-754, April.
    16. Gabriele Fiorentini & Enrique Sentana, 2019. "Dynamic specification tests for dynamic factor models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 34(3), pages 325-346, April.
    17. Ghosh, Abhik & Basu, Ayanendranath, 2016. "Testing composite null hypotheses based on S-divergences," Statistics & Probability Letters, Elsevier, vol. 114(C), pages 38-47.
    18. Gabriele Fiorentini & Enrique Sentana, 2009. "Dynamic Specification Tests for Static Factor Models," Working Papers wp2009_0912, CEMFI.
    19. Martín, Nirian & Balakrishnan, Narayanaswami, 2011. "Hypothesis testing in a generic nesting framework with general population distributions," DES - Working Papers. Statistics and Econometrics. WS ws113527, Universidad Carlos III de Madrid. Departamento de Estadística.
    20. Basu, A. & Mandal, A. & Pardo, L., 2010. "Hypothesis testing for two discrete populations based on the Hellinger distance," Statistics & Probability Letters, Elsevier, vol. 80(3-4), pages 206-214, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:188:y:2022:i:c:s0047259x2100124x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.