IDEAS home Printed from https://ideas.repec.org/a/spr/sankha/v81y2019i2d10.1007_s13171-018-0126-x.html
   My bibliography  Save this article

A Criterion for Local Model Selection

Author

Listed:
  • G. Avlogiaris

    (University of Ioannina)

  • A. C. Micheas

    (University of Missouri)

  • K. Zografos

    (University of Ioannina)

Abstract

In this paper, we introduce a class of local divergences between two probability distributions and illustrate its usefulness in model selection. Explicit expressions of the proposed local divergences are derived when the underlying distributions are members of the exponential family of distributions or they are described by multivariate normal models. In addition, a local model selection criterion, termed the local divergence information criterion (LDiv.IC), is proposed. Simulations and applications are presented in order to study and exemplify the performance of the proposed criterion.

Suggested Citation

  • G. Avlogiaris & A. C. Micheas & K. Zografos, 2019. "A Criterion for Local Model Selection," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 81(2), pages 406-444, December.
  • Handle: RePEc:spr:sankha:v:81:y:2019:i:2:d:10.1007_s13171-018-0126-x
    DOI: 10.1007/s13171-018-0126-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13171-018-0126-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13171-018-0126-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. J.J. Dik & M.C.M. de Gunst, 1985. "The Distribution Of General Quadratic Forms In Norma," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 39(1), pages 14-26, March.
    2. Shang, Junfeng & Cavanaugh, Joseph E., 2008. "Bootstrap variants of the Akaike information criterion for mixed model selection," Computational Statistics & Data Analysis, Elsevier, vol. 52(4), pages 2004-2021, January.
    3. Athanasios Christou Micheas, 2014. "Hierarchical Bayesian modeling of marked non-homogeneous Poisson processes with finite mixtures and inclusion of covariate information," Journal of Applied Statistics, Taylor & Francis Journals, vol. 41(12), pages 2596-2615, December.
    4. Joseph E. Cavanaugh, 2004. "Criteria for Linear Model Selection Based on Kullback's Symmetric Divergence," Australian & New Zealand Journal of Statistics, Australian Statistical Publishing Association Inc., vol. 46(2), pages 257-274, June.
    5. David J. Spiegelhalter & Nicola G. Best & Bradley P. Carlin & Angelika Van Der Linde, 2002. "Bayesian measures of model complexity and fit," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(4), pages 583-639, October.
    6. Toma, Aida & Broniatowski, Michel, 2011. "Dual divergence estimators and tests: Robustness results," Journal of Multivariate Analysis, Elsevier, vol. 102(1), pages 20-36, January.
    7. P. A. W Lewis & G. S. Shedler, 1979. "Simulation of nonhomogeneous poisson processes by thinning," Naval Research Logistics Quarterly, John Wiley & Sons, vol. 26(3), pages 403-413, September.
    8. Vuong, Quang H. & Wang, Weiren, 1993. "Minimum chi-square estimation and tests for model selection," Journal of Econometrics, Elsevier, vol. 56(1-2), pages 141-168, March.
    9. Claeskens,Gerda & Hjort,Nils Lid, 2008. "Model Selection and Model Averaging," Cambridge Books, Cambridge University Press, number 9780521852258, January.
    10. Bengtsson, Thomas & Cavanaugh, Joseph E., 2006. "An improved Akaike information criterion for state-space model selection," Computational Statistics & Data Analysis, Elsevier, vol. 50(10), pages 2635-2654, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Thomas Gkelsinis & Alex Karagrigoriou, 2020. "Theoretical Aspects on Measures of Directed Information with Simulations," Mathematics, MDPI, vol. 8(4), pages 1-13, April.
    2. A. Basu & A. Mandal & N. Martin & L. Pardo, 2018. "Testing Composite Hypothesis Based on the Density Power Divergence," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 80(2), pages 222-262, November.
    3. den Boer, Arnoud V. & Sierag, Dirk D., 2021. "Decision-based model selection," European Journal of Operational Research, Elsevier, vol. 290(2), pages 671-686.
    4. Thomas Fung & Joanna J.J. Wang & Eugene Seneta, 2014. "The Deviance Information Criterion in Comparison of Normal Mixing Models," International Statistical Review, International Statistical Institute, vol. 82(3), pages 411-421, December.
    5. Heyard, Rachel & Held, Leonhard, 2019. "The quantile probability model," Computational Statistics & Data Analysis, Elsevier, vol. 132(C), pages 84-99.
    6. Marhuenda, Yolanda & Morales, Domingo & del Carmen Pardo, María, 2014. "Information criteria for Fay–Herriot model selection," Computational Statistics & Data Analysis, Elsevier, vol. 70(C), pages 268-280.
    7. Fábio Bayer & Francisco Cribari-Neto, 2015. "Bootstrap-based model selection criteria for beta regressions," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 24(4), pages 776-795, December.
    8. S. C. Pandhare & T. V. Ramanathan, 2020. "The robust focused information criterion for strong mixing stochastic processes with $$\mathscr {L}^{2}$$ L 2 -differentiable parametric densities," Statistical Inference for Stochastic Processes, Springer, vol. 23(3), pages 637-663, October.
    9. Ando, Tomohiro & Tsay, Ruey, 2010. "Predictive likelihood for Bayesian model selection and averaging," International Journal of Forecasting, Elsevier, vol. 26(4), pages 744-763, October.
    10. Alice X. D. Dong & Jennifer S. K. Chan & Gareth W. Peters, 2014. "Risk Margin Quantile Function Via Parametric and Non-Parametric Bayesian Quantile Regression," Papers 1402.2492, arXiv.org.
    11. Thomas Gkelsinis & Alex Karagrigoriou & Vlad Stefan Barbu, 2022. "Statistical inference based on weighted divergence measures with simulations and applications," Statistical Papers, Springer, vol. 63(5), pages 1511-1536, October.
    12. Mathias Drton & Martyn Plummer, 2017. "A Bayesian information criterion for singular models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(2), pages 323-380, March.
    13. Buddhavarapu, Prasad & Bansal, Prateek & Prozzi, Jorge A., 2021. "A new spatial count data model with time-varying parameters," Transportation Research Part B: Methodological, Elsevier, vol. 150(C), pages 566-586.
    14. Mumtaz, Haroon & Theodoridis, Konstantinos, 2017. "Common and country specific economic uncertainty," Journal of International Economics, Elsevier, vol. 105(C), pages 205-216.
    15. Jesse Elliott & Zemin Bai & Shu-Ching Hsieh & Shannon E Kelly & Li Chen & Becky Skidmore & Said Yousef & Carine Zheng & David J Stewart & George A Wells, 2020. "ALK inhibitors for non-small cell lung cancer: A systematic review and network meta-analysis," PLOS ONE, Public Library of Science, vol. 15(2), pages 1-18, February.
    16. Christina Leuker & Thorsten Pachur & Ralph Hertwig & Timothy J. Pleskac, 2019. "Do people exploit risk–reward structures to simplify information processing in risky choice?," Journal of the Economic Science Association, Springer;Economic Science Association, vol. 5(1), pages 76-94, August.
    17. Francois Olivier & Laval Guillaume, 2011. "Deviance Information Criteria for Model Selection in Approximate Bayesian Computation," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 10(1), pages 1-25, July.
    18. Raggi, Davide & Bordignon, Silvano, 2012. "Long memory and nonlinearities in realized volatility: A Markov switching approach," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3730-3742.
    19. Angelica Gianfreda & Francesco Ravazzolo & Luca Rossini, 2023. "Large Time‐Varying Volatility Models for Hourly Electricity Prices," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 85(3), pages 545-573, June.
    20. Rubio, F.J. & Steel, M.F.J., 2011. "Inference for grouped data with a truncated skew-Laplace distribution," Computational Statistics & Data Analysis, Elsevier, vol. 55(12), pages 3218-3231, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sankha:v:81:y:2019:i:2:d:10.1007_s13171-018-0126-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.