Scalable Estimation of Epidemic Thresholds via Node Sampling
Author
Abstract
Suggested Citation
DOI: 10.1007/s13171-021-00249-0
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Peter J. Bickel & Purnamrita Sarkar, 2016. "Hypothesis testing for automated community detection in networks," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 78(1), pages 253-273, January.
- Srijan Sengupta & Yuguo Chen, 2018. "A block model for node popularity in networks with community structure," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 80(2), pages 365-386, March.
- Hoff P.D. & Raftery A.E. & Handcock M.S., 2002. "Latent Space Approaches to Social Network Analysis," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 1090-1098, December.
- Xiao Zhang & Cristopher Moore & Mark E. J. Newman, 2017. "Random graph models for dynamic networks," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 90(10), pages 1-14, October.
- Komolafe, Tomilayo & Quevedo, A. Valeria & Sengupta, Srijan & Woodall, William H., 2019. "Statistical evaluation of spectral methods for anomaly detection in static networks," Network Science, Cambridge University Press, vol. 7(3), pages 319-352, September.
- Luis E C Rocha & Fredrik Liljeros & Petter Holme, 2011. "Simulated Epidemics in an Empirical Spatiotemporal Network of 50,185 Sexual Contacts," PLOS Computational Biology, Public Library of Science, vol. 7(3), pages 1-9, March.
- Alison P. Galvani & Robert M. May, 2005. "Dimensions of superspreading," Nature, Nature, vol. 438(7066), pages 293-295, November.
- Stephen Eubank & Hasan Guclu & V. S. Anil Kumar & Madhav V. Marathe & Aravind Srinivasan & Zoltán Toroczkai & Nan Wang, 2004. "Modelling disease outbreaks in realistic urban social networks," Nature, Nature, vol. 429(6988), pages 180-184, May.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Piero Mazzarisi & Paolo Barucca & Fabrizio Lillo & Daniele Tantari, 2017. "A dynamic network model with persistent links and node-specific latent variables, with an application to the interbank market," Papers 1801.00185, arXiv.org.
- Mark S. Handcock & Adrian E. Raftery & Jeremy M. Tantrum, 2007. "Model‐based clustering for social networks," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 170(2), pages 301-354, March.
- Wei Zhao & S.N. Lahiri, 2022. "Estimation of the Parameters in an Expanding Dynamic Network Model," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 84(1), pages 261-282, June.
- Mingyang Ren & Sanguo Zhang & Junhui Wang, 2023. "Consistent estimation of the number of communities via regularized network embedding," Biometrics, The International Biometric Society, vol. 79(3), pages 2404-2416, September.
- Floriana Gargiulo & Sônia Ternes & Sylvie Huet & Guillaume Deffuant, 2010. "An Iterative Approach for Generating Statistically Realistic Populations of Households," PLOS ONE, Public Library of Science, vol. 5(1), pages 1-9, January.
- Saturnino Luz & Masood Masoodian, 2022. "Exploring Environmental and Geographical Factors Influencing the Spread of Infectious Diseases with Interactive Maps," Sustainability, MDPI, vol. 14(16), pages 1-19, August.
- Ian E. Fellows & Mark S. Handcock, 2023. "Modeling of networked populations when data is sampled or missing," METRON, Springer;Sapienza Università di Roma, vol. 81(1), pages 21-35, April.
- Samrachana Adhikari & Beau Dabbs, 2018. "Social Network Analysis in R: A Software Review," Journal of Educational and Behavioral Statistics, , vol. 43(2), pages 225-253, April.
- Bisin, Alberto & Moro, Andrea, 2022.
"Spatial‐SIR with network structure and behavior: Lockdown rules and the Lucas critique,"
Journal of Economic Behavior & Organization, Elsevier, vol. 198(C), pages 370-388.
- Alberto Bisin & Andrea Moro, 2021. "Spatial-SIR with Network Structure and Behavior: Lockdown Rules and the Lucas Critique," Papers 2103.13789, arXiv.org, revised Apr 2022.
- Alberto Bisin & Andrea Moro, 2021. "Spatial-SIR with Network Structure and Behavior: Lockdown Rules and the Lucas Critique," NBER Working Papers 28932, National Bureau of Economic Research, Inc.
- Samrachana Adhikari & Tracy Sweet & Brian Junker, 2021. "Analysis of longitudinal advice‐seeking networks following implementation of high stakes testing," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 184(4), pages 1475-1500, October.
- Chung, Jaewon & Bridgeford, Eric & Arroyo, Jesus & Pedigo, Benjamin D. & Saad-Eldin, Ali & Gopalakrishnan, Vivek & Xiang, Liang & Priebe, Carey E. & Vogelstein, Joshua T., 2020. "Statistical Connectomics," OSF Preprints ek4n3, Center for Open Science.
- Falk Bräuning & Siem Jan Koopman, 2016.
"The dynamic factor network model with an application to global credit risk,"
Working Papers
16-13, Federal Reserve Bank of Boston.
- Falk Bräuning & Siem Jan Koopman, 2016. "The Dynamic Factor Network Model with an Application to Global Credit-Risk," Tinbergen Institute Discussion Papers 16-105/III, Tinbergen Institute.
- Jamie Olson & Kathleen Carley, 2013. "Exact and approximate EM estimation of mutually exciting hawkes processes," Statistical Inference for Stochastic Processes, Springer, vol. 16(1), pages 63-80, April.
- Chih‐Sheng Hsieh & Lung‐Fei Lee & Vincent Boucher, 2020.
"Specification and estimation of network formation and network interaction models with the exponential probability distribution,"
Quantitative Economics, Econometric Society, vol. 11(4), pages 1349-1390, November.
- Hsieh, Chih-Sheng & Lee, Lung fei, 2017. "Specification and Estimation of Network Formation and Network Interaction Models with the Exponential Probability Distribution," MPRA Paper 60726, University Library of Munich, Germany.
- Lilit Yeghiazarian & William G Cumberland & Otto O Yang, 2013. "A Stochastic Multi-Scale Model of HIV-1 Transmission for Decision-Making: Application to a MSM Population," PLOS ONE, Public Library of Science, vol. 8(11), pages 1-1, November.
- Áureo de Paula, 2015.
"Econometrics of network models,"
CeMMAP working papers
CWP52/15, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Áureo de Paula, 2016. "Econometrics of network models," CeMMAP working papers 06/16, Institute for Fiscal Studies.
- Áureo de Paula, 2015. "Econometrics of network models," CeMMAP working papers 52/15, Institute for Fiscal Studies.
- Áureo de Paula, 2016. "Econometrics of network models," CeMMAP working papers CWP06/16, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Chen, Mingli & Fernández-Val, Iván & Weidner, Martin, 2021.
"Nonlinear factor models for network and panel data,"
Journal of Econometrics, Elsevier, vol. 220(2), pages 296-324.
- Mingli Chen & Iv'an Fern'andez-Val & Martin Weidner, 2014. "Nonlinear Factor Models for Network and Panel Data," Papers 1412.5647, arXiv.org, revised Oct 2019.
- Mingli Chen & Ivan Fernandez-Val & Martin Weidner, 2019. "Nonlinear factor models for network and panel data," CeMMAP working papers CWP18/19, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Mingli Chen & Ivan Fernandez-Val & Martin Weidner, 2018. "Nonlinear factor models for network and panel data," CeMMAP working papers CWP38/18, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Richard C. Larson, 2007. "Simple Models of Influenza Progression Within a Heterogeneous Population," Operations Research, INFORMS, vol. 55(3), pages 399-412, June.
- Cornelius Fritz & Michael Lebacher & Göran Kauermann, 2020. "Tempus volat, hora fugit: A survey of tie‐oriented dynamic network models in discrete and continuous time," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 74(3), pages 275-299, August.
- Askitas, Nikos & Tatsiramos, Konstantinos & Verheyden, Bertrand, 2020.
"Lockdown Strategies, Mobility Patterns and COVID-19,"
IZA Discussion Papers
13293, Institute of Labor Economics (IZA).
- Nikolaos Askitas & Konstantinos Tatsiramos & Bertrand Verheyden, 2020. "Lockdown Strategies, Mobility Patterns and Covid-19," CESifo Working Paper Series 8338, CESifo.
- Nikos Askitas & Konstantinos Tatsiramos & Bertrand Verheyden, 2020. "Lockdown Strategies, Mobility Patterns and COVID-19," Papers 2006.00531, arXiv.org.
More about this item
Keywords
Epidemic threshold; Networks; Sampling; Random walk; Configuration model; Epidemiology.;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sankha:v:84:y:2022:i:1:d:10.1007_s13171-021-00249-0. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.