IDEAS home Printed from https://ideas.repec.org/a/bla/jorssa/v170y2007i2p301-354.html
   My bibliography  Save this article

Model‐based clustering for social networks

Author

Listed:
  • Mark S. Handcock
  • Adrian E. Raftery
  • Jeremy M. Tantrum

Abstract

Summary. Network models are widely used to represent relations between interacting units or actors. Network data often exhibit transitivity, meaning that two actors that have ties to a third actor are more likely to be tied than actors that do not, homophily by attributes of the actors or dyads, and clustering. Interest often focuses on finding clusters of actors or ties, and the number of groups in the data is typically unknown. We propose a new model, the latent position cluster model, under which the probability of a tie between two actors depends on the distance between them in an unobserved Euclidean ‘social space’, and the actors’ locations in the latent social space arise from a mixture of distributions, each corresponding to a cluster. We propose two estimation methods: a two‐stage maximum likelihood method and a fully Bayesian method that uses Markov chain Monte Carlo sampling. The former is quicker and simpler, but the latter performs better. We also propose a Bayesian way of determining the number of clusters that are present by using approximate conditional Bayes factors. Our model represents transitivity, homophily by attributes and clustering simultaneously and does not require the number of clusters to be known. The model makes it easy to simulate realistic networks with clustering, which are potentially useful as inputs to models of more complex systems of which the network is part, such as epidemic models of infectious disease. We apply the model to two networks of social relations. A free software package in the R statistical language, latentnet, is available to analyse data by using the model.

Suggested Citation

  • Mark S. Handcock & Adrian E. Raftery & Jeremy M. Tantrum, 2007. "Model‐based clustering for social networks," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 170(2), pages 301-354, March.
  • Handle: RePEc:bla:jorssa:v:170:y:2007:i:2:p:301-354
    DOI: 10.1111/j.1467-985X.2007.00471.x
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/j.1467-985X.2007.00471.x
    Download Restriction: no

    File URL: https://libkey.io/10.1111/j.1467-985X.2007.00471.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Bonne J. H. Zijlstra & Marijtje A. J. van Duijn & Tom A. B. Snijders, 2005. "Model selection in random effects models for directed graphs using approximated Bayes factors," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 59(1), pages 107-118, February.
    2. Marijtje A. J. van Duijn & Tom A. B. Snijders & Bonne J. H. Zijlstra, 2004. "p2: a random effects model with covariates for directed graphs," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 58(2), pages 234-254, May.
    3. Dorogovtsev, S.N. & Mendes, J.F.F., 2003. "Evolution of Networks: From Biological Nets to the Internet and WWW," OUP Catalogue, Oxford University Press, number 9780198515906.
    4. Hoff P.D. & Raftery A.E. & Handcock M.S., 2002. "Latent Space Approaches to Social Network Analysis," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 1090-1098, December.
    5. Chris Fraley & Adrian E. Raftery, 2003. "Enhanced Model-Based Clustering, Density Estimation, and Discriminant Analysis Software: MCLUST," Journal of Classification, Springer;The Classification Society, vol. 20(2), pages 263-286, September.
    6. Longford, N.T. & Pittau, M.G., 2006. "Stability of household income in European countries in the 1990s," Computational Statistics & Data Analysis, Elsevier, vol. 51(2), pages 1364-1383, November.
    7. Matthew Stephens, 2000. "Dealing with label switching in mixture models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 62(4), pages 795-809.
    8. Tom Snijders, 1991. "Enumeration and simulation methods for 0–1 matrices with given marginals," Psychometrika, Springer;The Psychometric Society, vol. 56(3), pages 397-417, September.
    9. Petrone, Sonia & Raftery, Adrian E., 1997. "A note on the Dirichlet process prior in Bayesian nonparametric inference with partial exchangeability," Statistics & Probability Letters, Elsevier, vol. 36(1), pages 69-83, November.
    10. Fernando A. Quintana & Pilar L. Iglesias, 2003. "Bayesian clustering and product partition models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 65(2), pages 557-574, May.
    11. Gelfand A.E. & Kim H-J. & Sirmans C.F. & Banerjee S., 2003. "Spatial Modeling With Spatially Varying Coefficient Processes," Journal of the American Statistical Association, American Statistical Association, vol. 98, pages 387-396, January.
    12. Isobel Claire Gormley & Thomas Brendan Murphy, 2006. "Analysis of Irish third‐level college applications data," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 169(2), pages 361-379, March.
    13. A. Azzalini & A.W. Bowman, 1990. "A Look at Some Data on the Old Faithful Geyser," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 39(3), pages 357-365, November.
    14. Peter D. Hoff, 2005. "Bilinear Mixed-Effects Models for Dyadic Data," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 286-295, March.
    15. Murphy, Thomas Brendan & Martin, Donal, 2003. "Mixtures of distance-based models for ranking data," Computational Statistics & Data Analysis, Elsevier, vol. 41(3-4), pages 645-655, January.
    16. Chris T. Volinsky & Adrian E. Raftery, 2000. "Bayesian Information Criterion for Censored Survival Models," Biometrics, The International Biometric Society, vol. 56(1), pages 256-262, March.
    17. Stephen Eubank & Hasan Guclu & V. S. Anil Kumar & Madhav V. Marathe & Aravind Srinivasan & Zoltán Toroczkai & Nan Wang, 2004. "Modelling disease outbreaks in realistic urban social networks," Nature, Nature, vol. 429(6988), pages 180-184, May.
    18. Hoff, Peter D. & Ward, Michael D., 2004. "Modeling Dependencies in International Relations Networks," Political Analysis, Cambridge University Press, vol. 12(2), pages 160-175, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yingda Lu & Kinshuk Jerath & Param Vir Singh, 2013. "The Emergence of Opinion Leaders in a Networked Online Community: A Dyadic Model with Time Dynamics and a Heuristic for Fast Estimation," Management Science, INFORMS, vol. 59(8), pages 1783-1799, August.
    2. Samrachana Adhikari & Tracy Sweet & Brian Junker, 2021. "Analysis of longitudinal advice‐seeking networks following implementation of high stakes testing," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 184(4), pages 1475-1500, October.
    3. Xiao-Li Meng, 2016. "Discussion: Should a Working Model Actually Work?," International Statistical Review, International Statistical Institute, vol. 84(3), pages 362-367, December.
    4. Áureo de Paula, 2015. "Econometrics of network models," CeMMAP working papers CWP52/15, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    5. Chen, Mingli & Fernández-Val, Iván & Weidner, Martin, 2021. "Nonlinear factor models for network and panel data," Journal of Econometrics, Elsevier, vol. 220(2), pages 296-324.
    6. Koen Jochmans, 2018. "Semiparametric Analysis of Network Formation," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 36(4), pages 705-713, October.
    7. Salter-Townshend, Michael & Murphy, Thomas Brendan, 2013. "Variational Bayesian inference for the Latent Position Cluster Model for network data," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 661-671.
    8. Lee, Paul H. & Yu, Philip L.H., 2012. "Mixtures of weighted distance-based models for ranking data with applications in political studies," Computational Statistics & Data Analysis, Elsevier, vol. 56(8), pages 2486-2500.
    9. Eric A. Vance & Elizabeth A. Archie & Cynthia J. Moss, 2009. "Social networks in African elephants," Computational and Mathematical Organization Theory, Springer, vol. 15(4), pages 273-293, December.
    10. Marchette, David J. & Priebe, Carey E., 2008. "Predicting unobserved links in incompletely observed networks," Computational Statistics & Data Analysis, Elsevier, vol. 52(3), pages 1373-1386, January.
    11. repec:spo:wpecon:info:hdl:2441/dpido2upv86tqc7td18fd2mna is not listed on IDEAS
    12. repec:hal:wpspec:info:hdl:2441/dpido2upv86tqc7td18fd2mna is not listed on IDEAS
    13. Mark S. Handcock, 2017. "Comment," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(520), pages 1537-1539, October.
    14. François Caron & Emily B. Fox, 2017. "Sparse graphs using exchangeable random measures," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(5), pages 1295-1366, November.
    15. Montes-Rojas Gabriel, 2022. "Subgraph Network Random Effects Error Components Models: Specification and Testing," Journal of Econometric Methods, De Gruyter, vol. 11(1), pages 17-34, January.
    16. Adrian E. Raftery, 2017. "Comment: Extending the Latent Position Model for Networks," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(520), pages 1531-1534, October.
    17. Sosa, Juan & Betancourt, Brenda, 2022. "A latent space model for multilayer network data," Computational Statistics & Data Analysis, Elsevier, vol. 169(C).
    18. Riccardo Rastelli & Michael Fop, 2020. "A stochastic block model for interaction lengths," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 14(2), pages 485-512, June.
    19. Michael Braun & André Bonfrer, 2011. "Scalable Inference of Customer Similarities from Interactions Data Using Dirichlet Processes," Marketing Science, INFORMS, vol. 30(3), pages 513-531, 05-06.
    20. Biernacki, Christophe & Jacques, Julien, 2013. "A generative model for rank data based on insertion sort algorithm," Computational Statistics & Data Analysis, Elsevier, vol. 58(C), pages 162-176.
    21. Anirban Dasgupta & Srijan Sengupta, 2022. "Scalable Estimation of Epidemic Thresholds via Node Sampling," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 84(1), pages 321-344, June.
    22. Lynne Hamill & Nigel Gilbert, 2009. "Social Circles: A Simple Structure for Agent-Based Social Network Models," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 12(2), pages 1-3.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssa:v:170:y:2007:i:2:p:301-354. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.