IDEAS home Printed from https://ideas.repec.org/a/bla/jorssb/v80y2018i2p365-386.html
   My bibliography  Save this article

A block model for node popularity in networks with community structure

Author

Listed:
  • Srijan Sengupta
  • Yuguo Chen

Abstract

The community structure that is observed in empirical networks has been of particular interest in the statistics literature, with a strong emphasis on the study of block models. We study an important network feature called node popularity, which is closely associated with community structure. Neither the classical stochastic block model nor its degree‐corrected extension can satisfactorily capture the dynamics of node popularity as observed in empirical networks. We propose a popularity‐adjusted block model for flexible and realistic modelling of node popularity. We establish consistency of likelihood modularity for community detection as well as estimation of node popularities and model parameters, and demonstrate the advantages of the new modularity over the degree‐corrected block model modularity in simulations. By analysing the political blogs network, the British Members of Parliament network and the ‘Digital bibliography and library project’ bibliographical network, we illustrate that improved empirical insights can be gained through this methodology.

Suggested Citation

  • Srijan Sengupta & Yuguo Chen, 2018. "A block model for node popularity in networks with community structure," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 80(2), pages 365-386, March.
  • Handle: RePEc:bla:jorssb:v:80:y:2018:i:2:p:365-386
    DOI: 10.1111/rssb.12245
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/rssb.12245
    Download Restriction: no

    File URL: https://libkey.io/10.1111/rssb.12245?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Majid Noroozi & Marianna Pensky, 2022. "The Hierarchy of Block Models," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 84(1), pages 64-107, June.
    2. Li, Mengxue & von Sachs, Rainer & Pircalabelu, Eugen, 2024. "Time-varying degree-corrected stochastic block models," LIDAM Discussion Papers ISBA 2024014, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    3. Anirban Dasgupta & Srijan Sengupta, 2022. "Scalable Estimation of Epidemic Thresholds via Node Sampling," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 84(1), pages 321-344, June.
    4. Majid Noroozi & Ramchandra Rimal & Marianna Pensky, 2021. "Estimation and clustering in popularity adjusted block model," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 83(2), pages 293-317, April.
    5. Avanti Athreya & Joshua Cape & Minh Tang, 2022. "Eigenvalues of Stochastic Blockmodel Graphs and Random Graphs with Low-Rank Edge Probability Matrices," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 84(1), pages 36-63, June.
    6. Vainora, J., 2024. "Latent Position-Based Modeling of Parameter Heterogeneity," Cambridge Working Papers in Economics 2455, Faculty of Economics, University of Cambridge.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssb:v:80:y:2018:i:2:p:365-386. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.