IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1001109.html
   My bibliography  Save this article

Simulated Epidemics in an Empirical Spatiotemporal Network of 50,185 Sexual Contacts

Author

Listed:
  • Luis E C Rocha
  • Fredrik Liljeros
  • Petter Holme

Abstract

Sexual contact patterns, both in their temporal and network structure, can influence the spread of sexually transmitted infections (STI). Most previous literature has focused on effects of network topology; few studies have addressed the role of temporal structure. We simulate disease spread using SI and SIR models on an empirical temporal network of sexual contacts in high-end prostitution. We compare these results with several other approaches, including randomization of the data, classic mean-field approaches, and static network simulations. We observe that epidemic dynamics in this contact structure have well-defined, rather high epidemic thresholds. Temporal effects create a broad distribution of outbreak sizes, even if the per-contact transmission probability is taken to its hypothetical maximum of 100%. In general, we conclude that the temporal correlations of our network accelerate outbreaks, especially in the early phase of the epidemics, while the network topology (apart from the contact-rate distribution) slows them down. We find that the temporal correlations of sexual contacts can significantly change simulated outbreaks in a large empirical sexual network. Thus, temporal structures are needed alongside network topology to fully understand the spread of STIs. On a side note, our simulations further suggest that the specific type of commercial sex we investigate is not a reservoir of major importance for HIV.Author Summary: Human sexual contacts form a spatiotemporal network—the underlying structure over which sexually transmitted infections (STI) spread. By understanding the structure of this system we can better understand the dynamics of STIs. So far, there has been much focus on the static network structure of sexual contacts. In this paper, we extend this approach and also address temporal effects in a special type of sexual network—that of Internet-mediated prostitution. We analyze reported sexual contacts, probably the largest record of such, from a Brazilian Internet community where sex buyers rate their encounters with escorts. First, we thoroughly investigated disease spread in this dynamic sexual network. We found that the temporal correlations in this system would accelerate disease spread, especially at shorter time scales, whereas geographical effects would slow down an outbreak. More specifically, we found that this contact structure could sustain more contagious diseases, like human papillomavirus, but not HIV. These results highlight the importance of prostitution in the global dynamics of STIs.

Suggested Citation

  • Luis E C Rocha & Fredrik Liljeros & Petter Holme, 2011. "Simulated Epidemics in an Empirical Spatiotemporal Network of 50,185 Sexual Contacts," PLOS Computational Biology, Public Library of Science, vol. 7(3), pages 1-9, March.
  • Handle: RePEc:plo:pcbi00:1001109
    DOI: 10.1371/journal.pcbi.1001109
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1001109
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1001109&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1001109?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Marcel Salathé & James H Jones, 2010. "Dynamics and Control of Diseases in Networks with Community Structure," PLOS Computational Biology, Public Library of Science, vol. 6(4), pages 1-11, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Heetae Kim & Petter Holme, 2015. "Network Theory Integrated Life Cycle Assessment for an Electric Power System," Sustainability, MDPI, vol. 7(8), pages 1-15, August.
    2. Jeffrey A. Smith & Jessica Burow, 2020. "Using Ego Network Data to Inform Agent-based Models of Diffusion," Sociological Methods & Research, , vol. 49(4), pages 1018-1063, November.
    3. Eugenio Valdano & Davide Colombi & Chiara Poletto & Vittoria Colizza, 2023. "Epidemic graph diagrams as analytics for epidemic control in the data-rich era," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    4. Yanjie Xu & Tao Ren & Shixiang Sun, 2021. "Identifying Influential Edges by Node Influence Distribution and Dissimilarity Strategy," Mathematics, MDPI, vol. 9(20), pages 1-13, October.
    5. Hong, Xiao & Han, Yuexing & Wang, Bing, 2023. "Impacts of detection and contact tracing on the epidemic spread in time-varying networks," Applied Mathematics and Computation, Elsevier, vol. 439(C).
    6. Liu, Kang & Yin, Ling & Ma, Zhanwu & Zhang, Fan & Zhao, Juanjuan, 2020. "Investigating physical encounters of individuals in urban metro systems with large-scale smart card data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    7. Zhao, Xiuming & Yu, Hongtao & Li, Shaomei & Liu, Shuxin & Zhang, Jianpeng & Cao, Xiaochun, 2022. "Effects of memory on spreading processes in non-Markovian temporal networks based on simplicial complex," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 606(C).
    8. Wang, Min & Li, Wanchun & Guo, Yuning & Peng, Xiaoyan & Li, Yingxiang, 2020. "Identifying influential spreaders in complex networks based on improved k-shell method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 554(C).
    9. Petter Holme, 2021. "Fast and principled simulations of the SIR model on temporal networks," PLOS ONE, Public Library of Science, vol. 16(2), pages 1-15, February.
    10. Eugenio Valdano & Chiara Poletto & Armando Giovannini & Diana Palma & Lara Savini & Vittoria Colizza, 2015. "Predicting Epidemic Risk from Past Temporal Contact Data," PLOS Computational Biology, Public Library of Science, vol. 11(3), pages 1-19, March.
    11. Hao, Hongchang & Xing, Wanli & Wang, Anjian & Song, Hao & Han, Yawen & Zhao, Pei & Xie, Ziqi & Chen, Xuemei, 2022. "Multi-layer networks research on analyzing supply risk transmission of lithium industry chain," Resources Policy, Elsevier, vol. 79(C).
    12. Anirban Dasgupta & Srijan Sengupta, 2022. "Scalable Estimation of Epidemic Thresholds via Node Sampling," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 84(1), pages 321-344, June.
    13. Luis E C Rocha & Vincent D Blondel, 2013. "Bursts of Vertex Activation and Epidemics in Evolving Networks," PLOS Computational Biology, Public Library of Science, vol. 9(3), pages 1-9, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gregory, Steve, 2012. "Ordered community structure in networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(8), pages 2752-2763.
    2. Wei Zhong, 2017. "Simulating influenza pandemic dynamics with public risk communication and individual responsive behavior," Computational and Mathematical Organization Theory, Springer, vol. 23(4), pages 475-495, December.
    3. Chen, Dandan & Zheng, Muhua & Zhao, Ming & Zhang, Yu, 2018. "A dynamic vaccination strategy to suppress the recurrent epidemic outbreaks," Chaos, Solitons & Fractals, Elsevier, vol. 113(C), pages 108-114.
    4. Xie, Xiaoxiao & Huo, Liang'an, 2024. "Co-evolution dynamics between information and epidemic with asymmetric activity levels and community structure in time-varying multiplex networks," Chaos, Solitons & Fractals, Elsevier, vol. 181(C).
    5. Bowen Yan & Steve Gregory, 2013. "Identifying Communities and Key Vertices by Reconstructing Networks from Samples," PLOS ONE, Public Library of Science, vol. 8(4), pages 1-14, April.
    6. Zhou, Bin & Yan, Xiao-Yong & Xu, Xiao-Ke & Xu, Xiao-Ting & Wang, Nianxin, 2018. "Evolutionary of online social networks driven by pareto wealth distribution and bidirectional preferential attachment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 507(C), pages 427-434.
    7. Eugenio Valdano & Chiara Poletto & Armando Giovannini & Diana Palma & Lara Savini & Vittoria Colizza, 2015. "Predicting Epidemic Risk from Past Temporal Contact Data," PLOS Computational Biology, Public Library of Science, vol. 11(3), pages 1-19, March.
    8. Saxena, Chandni & Doja, M.N. & Ahmad, Tanvir, 2018. "Group based centrality for immunization of complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 508(C), pages 35-47.
    9. Stephen J Gilmore, 2011. "Control Strategies for Endemic Childhood Scabies," PLOS ONE, Public Library of Science, vol. 6(1), pages 1-14, January.
    10. Kotnis, Bhushan & Kuri, Joy, 2016. "Cost effective campaigning in social networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 450(C), pages 670-681.
    11. Kathrin Büttner & Joachim Krieter & Arne Traulsen & Imke Traulsen, 2013. "Efficient Interruption of Infection Chains by Targeted Removal of Central Holdings in an Animal Trade Network," PLOS ONE, Public Library of Science, vol. 8(9), pages 1-12, September.
    12. Jose L Herrera & Ravi Srinivasan & John S Brownstein & Alison P Galvani & Lauren Ancel Meyers, 2016. "Disease Surveillance on Complex Social Networks," PLOS Computational Biology, Public Library of Science, vol. 12(7), pages 1-16, July.
    13. Shams, Bita & Khansari, Mohammad, 2015. "On the impact of epidemic severity on network immunization algorithms," Theoretical Population Biology, Elsevier, vol. 106(C), pages 83-93.
    14. Karikalan Nagarajan & Bharathidasan Palani & Javeed Basha & Lavanya Jayabal & Malaisamy Muniyandi, 2022. "A social networks-driven approach to understand the unique alcohol mixing patterns of tuberculosis patients: reporting methods and findings from a high TB-burden setting," Palgrave Communications, Palgrave Macmillan, vol. 9(1), pages 1-8, December.
    15. Gong Kai & Kang Li, 2018. "A New K-Shell Decomposition Method for Identifying Influential Spreaders of Epidemics on Community Networks," Journal of Systems Science and Information, De Gruyter, vol. 6(4), pages 366-375, August.
    16. Tzai-Hung Wen & Wei Chien Benny Chin, 2015. "Incorporation of Spatial Interactions in Location Networks to Identify Critical Geo-Referenced Routes for Assessing Disease Control Measures on a Large-Scale Campus," IJERPH, MDPI, vol. 12(4), pages 1-15, April.
    17. Luis E C Rocha & Vincent D Blondel, 2013. "Bursts of Vertex Activation and Epidemics in Evolving Networks," PLOS Computational Biology, Public Library of Science, vol. 9(3), pages 1-9, March.
    18. Hu, Xin & Wang, Zhishuang & Sun, Qingyi & Chen, Jiaxing & Zhao, Dawei & Xia, Chengyi, 2024. "Coupled propagation between one communicable disease and related two types of information on multiplex networks with simplicial complexes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 645(C).
    19. Benjamin Blonder & Anna Dornhaus, 2011. "Time-Ordered Networks Reveal Limitations to Information Flow in Ant Colonies," PLOS ONE, Public Library of Science, vol. 6(5), pages 1-8, May.
    20. Shepelev, I.A. & Bukh, A.V. & Strelkova, G.I., 2022. "Anti-phase synchronization of waves in a multiplex network of van der Pol oscillators," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1001109. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.