Consistent estimation of the number of communities via regularized network embedding
Author
Abstract
Suggested Citation
DOI: 10.1111/biom.13815
Download full text from publisher
References listed on IDEAS
- Peter J. Bickel & Purnamrita Sarkar, 2016. "Hypothesis testing for automated community detection in networks," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 78(1), pages 253-273, January.
- Lan Wang & Bo Peng & Jelena Bradic & Runze Li & Yunan Wu, 2020. "Rejoinder to “A Tuning-Free Robust and Efficient Approach to High-Dimensional Regression”," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 115(532), pages 1726-1729, December.
- Jianwei Hu & Hong Qin & Ting Yan & Yunpeng Zhao, 2020. "Corrected Bayesian Information Criterion for Stochastic Block Models," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 115(532), pages 1771-1783, December.
- Hoff P.D. & Raftery A.E. & Handcock M.S., 2002. "Latent Space Approaches to Social Network Analysis," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 1090-1098, December.
- Jianqing Fan & Cong Ma & Kaizheng Wang, 2020. "Comment on “A Tuning-Free Robust and Efficient Approach to High-Dimensional Regression”," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 115(532), pages 1720-1725, December.
- Kehui Chen & Jing Lei, 2018. "Network Cross-Validation for Determining the Number of Communities in Network Data," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(521), pages 241-251, January.
- Bing Li & Eftychia Solea, 2018. "A Nonparametric Graphical Model for Functional Data With Application to Brain Networks Based on fMRI," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(524), pages 1637-1655, October.
- Xiudi Li & Ali Shojaie, 2020. "Discussion of “A Tuning-Free Robust and Efficient Approach to High-Dimensional Regression”," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 115(532), pages 1717-1719, December.
- Jiadong Ji & Yong He & Lei Liu & Lei Xie, 2021. "Brain connectivity alteration detection via matrix‐variate differential network model," Biometrics, The International Biometric Society, vol. 77(4), pages 1409-1421, December.
- Shujie Ma & Jian Huang, 2017. "A Concave Pairwise Fusion Approach to Subgroup Analysis," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(517), pages 410-423, January.
- Lan Wang & Bo Peng & Jelena Bradic & Runze Li & Yunan Wu, 2020. "A Tuning-free Robust and Efficient Approach to High-dimensional Regression," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 115(532), pages 1700-1714, December.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Fan, Xinyan & Fang, Kuangnan & Pu, Dan & Qin, Ruixuan, 2024. "Generalized latent space model for one-mode networks with awareness of two-mode networks," Computational Statistics & Data Analysis, Elsevier, vol. 193(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Yuyang Liu & Pengfei Pi & Shan Luo, 2023. "A semi-parametric approach to feature selection in high-dimensional linear regression models," Computational Statistics, Springer, vol. 38(2), pages 979-1000, June.
- Canhong Wen & Zhenduo Li & Ruipeng Dong & Yijin Ni & Wenliang Pan, 2023. "Simultaneous Dimension Reduction and Variable Selection for Multinomial Logistic Regression," INFORMS Journal on Computing, INFORMS, vol. 35(5), pages 1044-1060, September.
- Yu, Ke & Luo, Shan, 2024. "Rank-based sequential feature selection for high-dimensional accelerated failure time models with main and interaction effects," Computational Statistics & Data Analysis, Elsevier, vol. 197(C).
- Xinyu Fu & Mian Huang & Weixin Yao, 2024. "Semiparametric efficient estimation in high‐dimensional partial linear regression models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 51(3), pages 1259-1287, September.
- Dong, Wei & Xu, Chen & Xie, Jinhan & Tang, Niansheng, 2024. "Tuning-free sparse clustering via alternating hard-thresholding," Journal of Multivariate Analysis, Elsevier, vol. 203(C).
- Jack Jewson & David Rossell, 2022. "General Bayesian loss function selection and the use of improper models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(5), pages 1640-1665, November.
- Wu, Qianyong & Hu, Jiang, 2024. "Two-sample test of stochastic block models," Computational Statistics & Data Analysis, Elsevier, vol. 192(C).
- Anirban Dasgupta & Srijan Sengupta, 2022. "Scalable Estimation of Epidemic Thresholds via Node Sampling," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 84(1), pages 321-344, June.
- Vainora, J., 2024. "Latent Position-Based Modeling of Parameter Heterogeneity," Cambridge Working Papers in Economics 2455, Faculty of Economics, University of Cambridge.
- Jianqing Fan & Yingying Fan & Xiao Han & Jinchi Lv, 2022. "SIMPLE: Statistical inference on membership profiles in large networks," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(2), pages 630-653, April.
- Watanabe, Chihiro & Suzuki, Taiji, 2021. "Goodness-of-fit test for latent block models," Computational Statistics & Data Analysis, Elsevier, vol. 154(C).
- Riccardo Rastelli & Michael Fop, 2020. "A stochastic block model for interaction lengths," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 14(2), pages 485-512, June.
- Michael Braun & André Bonfrer, 2011. "Scalable Inference of Customer Similarities from Interactions Data Using Dirichlet Processes," Marketing Science, INFORMS, vol. 30(3), pages 513-531, 05-06.
- Onnela, Jukka-Pekka & Landon, Bruce E. & Kahn, Anna-Lea & Ahmed, Danish & Verma, Harish & O'Malley, A. James & Bahl, Sunil & Sutter, Roland W. & Christakis, Nicholas A., 2016. "Polio vaccine hesitancy in the networks and neighborhoods of Malegaon, India," Social Science & Medicine, Elsevier, vol. 153(C), pages 99-106.
- Laleh Tafakori & Armin Pourkhanali & Riccardo Rastelli, 2022. "Measuring systemic risk and contagion in the European financial network," Empirical Economics, Springer, vol. 63(1), pages 345-389, July.
- Mark S. Handcock & Adrian E. Raftery & Jeremy M. Tantrum, 2007. "Model‐based clustering for social networks," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 170(2), pages 301-354, March.
- Shuang Zhang & Xingdong Feng, 2022. "Distributed identification of heterogeneous treatment effects," Computational Statistics, Springer, vol. 37(1), pages 57-89, March.
- Ian E. Fellows & Mark S. Handcock, 2023. "Modeling of networked populations when data is sampled or missing," METRON, Springer;Sapienza Università di Roma, vol. 81(1), pages 21-35, April.
- Samrachana Adhikari & Beau Dabbs, 2018. "Social Network Analysis in R: A Software Review," Journal of Educational and Behavioral Statistics, , vol. 43(2), pages 225-253, April.
- Can M. Le & Tianxi Li, 2022. "Linear regression and its inference on noisy network‐linked data," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(5), pages 1851-1885, November.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:79:y:2023:i:3:p:2404-2416. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.