IDEAS home Printed from https://ideas.repec.org/a/spr/sankha/v84y2022i1d10.1007_s13171-021-00258-z.html
   My bibliography  Save this article

Estimation of the Parameters in an Expanding Dynamic Network Model

Author

Listed:
  • Wei Zhao

    (North Carolina State University)

  • S.N. Lahiri

    (Washington University in St Louis)

Abstract

In this paper, we consider an expanding sparse dynamic network model where the time evolution is governed by a Markovian structure. Transition of the network from time t to t + 1 involves three components where a new node joins the existing network, some of the existing edges drop out, and new edges are formed with the incoming node. We consider long term behavior of the network density and establish its limit. We also study asymptotic distributions of the maximum likelihood estimators of key model parameters. We report results from a simulation study to investigate finite sample properties of the estimators.

Suggested Citation

  • Wei Zhao & S.N. Lahiri, 2022. "Estimation of the Parameters in an Expanding Dynamic Network Model," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 84(1), pages 261-282, June.
  • Handle: RePEc:spr:sankha:v:84:y:2022:i:1:d:10.1007_s13171-021-00258-z
    DOI: 10.1007/s13171-021-00258-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13171-021-00258-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13171-021-00258-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yuan Zhang & Elizaveta Levina & Ji Zhu, 2017. "Estimating network edge probabilities by neighbourhood smoothing," Biometrika, Biometrika Trust, vol. 104(4), pages 771-783.
    2. Hoff P.D. & Raftery A.E. & Handcock M.S., 2002. "Latent Space Approaches to Social Network Analysis," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 1090-1098, December.
    3. Xiao Zhang & Cristopher Moore & Mark E. J. Newman, 2017. "Random graph models for dynamic networks," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 90(10), pages 1-14, October.
    4. Catherine Matias & Vincent Miele, 2017. "Statistical clustering of temporal networks through a dynamic stochastic block model," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(4), pages 1119-1141, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yuan, Quan & Liu, Binghui, 2021. "Community detection via an efficient nonconvex optimization approach based on modularity," Computational Statistics & Data Analysis, Elsevier, vol. 157(C).
    2. Ludkin, Matthew, 2020. "Inference for a generalised stochastic block model with unknown number of blocks and non-conjugate edge models," Computational Statistics & Data Analysis, Elsevier, vol. 152(C).
    3. Piero Mazzarisi & Paolo Barucca & Fabrizio Lillo & Daniele Tantari, 2017. "A dynamic network model with persistent links and node-specific latent variables, with an application to the interbank market," Papers 1801.00185, arXiv.org.
    4. Riccardo Rastelli & Michael Fop, 2020. "A stochastic block model for interaction lengths," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 14(2), pages 485-512, June.
    5. Anirban Dasgupta & Srijan Sengupta, 2022. "Scalable Estimation of Epidemic Thresholds via Node Sampling," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 84(1), pages 321-344, June.
    6. Joshua Daniel Loyal & Yuguo Chen, 2020. "Statistical Network Analysis: A Review with Applications to the Coronavirus Disease 2019 Pandemic," International Statistical Review, International Statistical Institute, vol. 88(2), pages 419-440, August.
    7. Hledik, Juraj & Rastelli, Riccardo, 2020. "A dynamic network model to measure exposure diversification in the Austrian interbank market," ESRB Working Paper Series 109, European Systemic Risk Board.
    8. S Chandna & S C Olhede & P J Wolfe, 2022. "Local linear graphon estimation using covariates [Representations for partially exchangeable arrays of random variables]," Biometrika, Biometrika Trust, vol. 109(3), pages 721-734.
    9. Juraj Hledik & Riccardo Rastelli, 2018. "A dynamic network model to measure exposure diversification in the Austrian interbank market," Papers 1804.01367, arXiv.org, revised Aug 2018.
    10. Laleh Tafakori & Armin Pourkhanali & Riccardo Rastelli, 2022. "Measuring systemic risk and contagion in the European financial network," Empirical Economics, Springer, vol. 63(1), pages 345-389, July.
    11. Mark S. Handcock & Adrian E. Raftery & Jeremy M. Tantrum, 2007. "Model‐based clustering for social networks," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 170(2), pages 301-354, March.
    12. Ian E. Fellows & Mark S. Handcock, 2023. "Modeling of networked populations when data is sampled or missing," METRON, Springer;Sapienza Università di Roma, vol. 81(1), pages 21-35, April.
    13. Samrachana Adhikari & Beau Dabbs, 2018. "Social Network Analysis in R: A Software Review," Journal of Educational and Behavioral Statistics, , vol. 43(2), pages 225-253, April.
    14. Guang Ouyang & Dipak K. Dey & Panpan Zhang, 2020. "Clique-Based Method for Social Network Clustering," Journal of Classification, Springer;The Classification Society, vol. 37(1), pages 254-274, April.
    15. Thanne Mafaziya Nijamdeen & Jean Huge & Hajaniaina Ratsimbazafy & Kodikara Arachchilage Sunanda Kodikara & Farid Dahdouh-Guebas, 2022. "A social network analysis of mangrove management stakeholders in Sri Lanka's Northern Province," ULB Institutional Repository 2013/349602, ULB -- Universite Libre de Bruxelles.
    16. Samrachana Adhikari & Tracy Sweet & Brian Junker, 2021. "Analysis of longitudinal advice‐seeking networks following implementation of high stakes testing," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 184(4), pages 1475-1500, October.
    17. Chung, Jaewon & Bridgeford, Eric & Arroyo, Jesus & Pedigo, Benjamin D. & Saad-Eldin, Ali & Gopalakrishnan, Vivek & Xiang, Liang & Priebe, Carey E. & Vogelstein, Joshua T., 2020. "Statistical Connectomics," OSF Preprints ek4n3, Center for Open Science.
    18. Falk Bräuning & Siem Jan Koopman, 2016. "The dynamic factor network model with an application to global credit risk," Working Papers 16-13, Federal Reserve Bank of Boston.
    19. Jamie Olson & Kathleen Carley, 2013. "Exact and approximate EM estimation of mutually exciting hawkes processes," Statistical Inference for Stochastic Processes, Springer, vol. 16(1), pages 63-80, April.
    20. Chih‐Sheng Hsieh & Lung‐Fei Lee & Vincent Boucher, 2020. "Specification and estimation of network formation and network interaction models with the exponential probability distribution," Quantitative Economics, Econometric Society, vol. 11(4), pages 1349-1390, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sankha:v:84:y:2022:i:1:d:10.1007_s13171-021-00258-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.