IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i16p9990-d886639.html
   My bibliography  Save this article

Exploring Environmental and Geographical Factors Influencing the Spread of Infectious Diseases with Interactive Maps

Author

Listed:
  • Saturnino Luz

    (Usher Institute, Edinburgh Medical School, The University of Edinburgh, Edinburgh EH16 4UX, UK)

  • Masood Masoodian

    (School of Arts, Design and Architecture, Aalto University, 02150 Espoo, Finland)

Abstract

Environmental problems due to human activities such as deforestation, urbanisation, and large scale intensive farming are some of the major factors behind the rapid spread of many infectious diseases. This in turn poses significant challenges not only in as regards providing adequate healthcare, but also in supporting healthcare workers, medical researchers, policy makers, and others involved in managing infectious diseases. These challenges include surveillance, tracking of infections, communication of public health knowledge and promotion of behavioural change. Behind these challenges lies a complex set of factors which include not only biomedical and population health determinants but also environmental, climatic, geographic, and socioeconomic variables. While there is broad agreement that these factors are best understood when considered in conjunction, aggregating and presenting diverse information sources requires effective information systems, software tools, and data visualisation. In this article, we argue that interactive maps, which couple geographical information systems and advanced information visualisation techniques, provide a suitable unifying framework for coordinating these tasks. Therefore, we examine how interactive maps can support spatial epidemiological visualisation and modelling involving distributed and dynamic data sources and incorporating temporal aspects of disease spread. Combining spatial and temporal aspects can be crucial in such applications. We discuss these issues in the context of support for disease surveillance in remote regions, utilising tools that facilitate distributed data collection and enable multidisciplinary collaboration, while also providing support for simulation and data analysis. We show that interactive maps deployed on a combination of mobile devices and large screens can provide effective means for collection, sharing, and analysis of health data.

Suggested Citation

  • Saturnino Luz & Masood Masoodian, 2022. "Exploring Environmental and Geographical Factors Influencing the Spread of Infectious Diseases with Interactive Maps," Sustainability, MDPI, vol. 14(16), pages 1-19, August.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:16:p:9990-:d:886639
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/16/9990/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/16/9990/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Geoffrey M. Jacquez, 2000. "Spatial analysis in epidemiology: Nascent science or a failure of GIS?," Journal of Geographical Systems, Springer, vol. 2(1), pages 91-97, March.
    2. Itai Kloog & Lara Ifat Kaufman & Kees De Hoogh, 2018. "Using Open Street Map Data in Environmental Exposure Assessment Studies: Eastern Massachusetts, Bern Region, and South Israel as a Case Study," IJERPH, MDPI, vol. 15(11), pages 1-21, November.
    3. Swen P. M. Bos & Tina Cornioley & Anne Dray & Patrick O. Waeber & Claude A. Garcia, 2020. "Exploring Livelihood Strategies of Shifting Cultivation Farmers in Assam through Games," Sustainability, MDPI, vol. 12(6), pages 1-17, March.
    4. Stephen Eubank & Hasan Guclu & V. S. Anil Kumar & Madhav V. Marathe & Aravind Srinivasan & Zoltán Toroczkai & Nan Wang, 2004. "Modelling disease outbreaks in realistic urban social networks," Nature, Nature, vol. 429(6988), pages 180-184, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Floriana Gargiulo & Sônia Ternes & Sylvie Huet & Guillaume Deffuant, 2010. "An Iterative Approach for Generating Statistically Realistic Populations of Households," PLOS ONE, Public Library of Science, vol. 5(1), pages 1-9, January.
    2. Mark S. Handcock & Adrian E. Raftery & Jeremy M. Tantrum, 2007. "Model‐based clustering for social networks," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 170(2), pages 301-354, March.
    3. Pablo D. Fajgelbaum & Amit Khandelwal & Wookun Kim & Cristiano Mantovani & Edouard Schaal, 2021. "Optimal Lockdown in a Commuting Network," American Economic Review: Insights, American Economic Association, vol. 3(4), pages 503-522, December.
    4. Bisin, Alberto & Moro, Andrea, 2022. "Spatial‐SIR with network structure and behavior: Lockdown rules and the Lucas critique," Journal of Economic Behavior & Organization, Elsevier, vol. 198(C), pages 370-388.
    5. Wiriya Mahikul & Somkid Kripattanapong & Piya Hanvoravongchai & Aronrag Meeyai & Sopon Iamsirithaworn & Prasert Auewarakul & Wirichada Pan-ngum, 2020. "Contact Mixing Patterns and Population Movement among Migrant Workers in an Urban Setting in Thailand," IJERPH, MDPI, vol. 17(7), pages 1-11, March.
    6. Stefano Guarino & Enrico Mastrostefano & Massimo Bernaschi & Alessandro Celestini & Marco Cianfriglia & Davide Torre & Lena Rebecca Zastrow, 2021. "Inferring Urban Social Networks from Publicly Available Data," Future Internet, MDPI, vol. 13(5), pages 1-45, April.
    7. Xiaoyan Mu & Anthony Gar-On Yeh & Xiaohu Zhang, 2021. "The interplay of spatial spread of COVID-19 and human mobility in the urban system of China during the Chinese New Year," Environment and Planning B, , vol. 48(7), pages 1955-1971, September.
    8. Alberto Bisin & Andrea Moro, 2020. "Learning Epidemiology by Doing: The Empirical Implications of a Spatial-SIR Model with Behavioral Responses," NBER Working Papers 27590, National Bureau of Economic Research, Inc.
    9. Richard C. Larson, 2007. "Simple Models of Influenza Progression Within a Heterogeneous Population," Operations Research, INFORMS, vol. 55(3), pages 399-412, June.
    10. Askitas, Nikos & Tatsiramos, Konstantinos & Verheyden, Bertrand, 2020. "Lockdown Strategies, Mobility Patterns and COVID-19," IZA Discussion Papers 13293, Institute of Labor Economics (IZA).
    11. Jürgen Hackl & Thibaut Dubernet, 2019. "Epidemic Spreading in Urban Areas Using Agent-Based Transportation Models," Future Internet, MDPI, vol. 11(4), pages 1-14, April.
    12. Renaud Marti & Zhichao Li & Thibault Catry & Emmanuel Roux & Morgan Mangeas & Pascal Handschumacher & Jean Gaudart & Annelise Tran & Laurent Demagistri & Jean-François Faure & José Joaquín Carvajal & , 2020. "A Mapping Review on Urban Landscape Factors of Dengue Retrieved from Earth Observation Data, GIS Techniques, and Survey Questionnaires," Post-Print hal-02682042, HAL.
    13. Xiao, Yao & Yang, Mofeng & Zhu, Zheng & Yang, Hai & Zhang, Lei & Ghader, Sepehr, 2021. "Modeling indoor-level non-pharmaceutical interventions during the COVID-19 pandemic: A pedestrian dynamics-based microscopic simulation approach," Transport Policy, Elsevier, vol. 109(C), pages 12-23.
    14. Hyeyoung Kim & Ningchuan Xiao & Mark Moritz & Rebecca Garabed & Laura W. Pomeroy, 2016. "Simulating the Transmission of Foot-And-Mouth Disease Among Mobile Herds in the Far North Region, Cameroon," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 19(2), pages 1-6.
    15. Nagel, Kai & Rakow, Christian & Müller, Sebastian A., 2021. "Realistic agent-based simulation of infection dynamics and percolation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 584(C).
    16. Yeran Sun & Hongchao Fan & Ming Li & Alexander Zipf, 2016. "Identifying the city center using human travel flows generated from location-based social networking data," Environment and Planning B, , vol. 43(3), pages 480-498, May.
    17. Kuo-Ying Wang, 2014. "How Change of Public Transportation Usage Reveals Fear of the SARS Virus in a City," PLOS ONE, Public Library of Science, vol. 9(3), pages 1-10, March.
    18. Kathryn Glass & Peter W. Tait & Elizabeth G. Hanna & Keith Dear, 2015. "Estimating Risks of Heat Strain by Age and Sex: A Population-Level Simulation Model," IJERPH, MDPI, vol. 12(5), pages 1-15, May.
    19. Santi Phithakkitnukoon & Zbigniew Smoreda & Patrick Olivier, 2012. "Socio-Geography of Human Mobility: A Study Using Longitudinal Mobile Phone Data," PLOS ONE, Public Library of Science, vol. 7(6), pages 1-9, June.
    20. Hou, Yunxiang & Lu, Yikang & Dong, Yuting & Jin, Libin & Shi, Lei, 2023. "Impact of different social attitudes on epidemic spreading in activity-driven networks," Applied Mathematics and Computation, Elsevier, vol. 446(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:16:p:9990-:d:886639. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.