IDEAS home Printed from https://ideas.repec.org/a/bla/jorssb/v78y2016i1p253-273.html
   My bibliography  Save this article

Hypothesis testing for automated community detection in networks

Author

Listed:
  • Peter J. Bickel
  • Purnamrita Sarkar

Abstract

No abstract is available for this item.

Suggested Citation

  • Peter J. Bickel & Purnamrita Sarkar, 2016. "Hypothesis testing for automated community detection in networks," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 78(1), pages 253-273, January.
  • Handle: RePEc:bla:jorssb:v:78:y:2016:i:1:p:253-273
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1111/rssb.12117
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mark S. Handcock & Adrian E. Raftery & Jeremy M. Tantrum, 2007. "Model‐based clustering for social networks," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 170(2), pages 301-354, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Neil Hwang & Jiarui Xu & Shirshendu Chatterjee & Sharmodeep Bhattacharyya, 2022. "The Bethe Hessian and Information Theoretic Approaches for Online Change-Point Detection in Network Data," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 84(1), pages 283-320, June.
    2. Jianqing Fan & Yingying Fan & Xiao Han & Jinchi Lv, 2022. "SIMPLE: Statistical inference on membership profiles in large networks," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(2), pages 630-653, April.
    3. Wu, Qianyong & Hu, Jiang, 2024. "Two-sample test of stochastic block models," Computational Statistics & Data Analysis, Elsevier, vol. 192(C).
    4. Wang, Tingting & Wang, Zhen, 2024. "A community scale test for node affiliation based on network sampling and wavelet analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 643(C).
    5. Mingyang Ren & Sanguo Zhang & Junhui Wang, 2023. "Consistent estimation of the number of communities via regularized network embedding," Biometrics, The International Biometric Society, vol. 79(3), pages 2404-2416, September.
    6. Watanabe, Chihiro & Suzuki, Taiji, 2021. "Goodness-of-fit test for latent block models," Computational Statistics & Data Analysis, Elsevier, vol. 154(C).
    7. Anirban Dasgupta & Srijan Sengupta, 2022. "Scalable Estimation of Epidemic Thresholds via Node Sampling," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 84(1), pages 321-344, June.
    8. Mingao Yuan & Fan Yang & Zuofeng Shang, 2022. "Hypothesis testing in sparse weighted stochastic block model," Statistical Papers, Springer, vol. 63(4), pages 1051-1073, August.
    9. Zhang, Yue & Yuan, Mingao, 2020. "Nonreconstruction of high-dimensional stochastic block model with bounded degree," Statistics & Probability Letters, Elsevier, vol. 158(C).
    10. Wu, Qianyong & Hu, Jiang, 2024. "A spectral based goodness-of-fit test for stochastic block models," Statistics & Probability Letters, Elsevier, vol. 209(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Laleh Tafakori & Armin Pourkhanali & Riccardo Rastelli, 2022. "Measuring systemic risk and contagion in the European financial network," Empirical Economics, Springer, vol. 63(1), pages 345-389, July.
    2. Samrachana Adhikari & Beau Dabbs, 2018. "Social Network Analysis in R: A Software Review," Journal of Educational and Behavioral Statistics, , vol. 43(2), pages 225-253, April.
    3. Guang Ouyang & Dipak K. Dey & Panpan Zhang, 2020. "Clique-Based Method for Social Network Clustering," Journal of Classification, Springer;The Classification Society, vol. 37(1), pages 254-274, April.
    4. Samrachana Adhikari & Tracy Sweet & Brian Junker, 2021. "Analysis of longitudinal advice‐seeking networks following implementation of high stakes testing," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 184(4), pages 1475-1500, October.
    5. Jin, Jiashun & Ke, Zheng Tracy & Luo, Shengming, 2024. "Mixed membership estimation for social networks," Journal of Econometrics, Elsevier, vol. 239(2).
    6. Wentao Qu & Xianchao Xiu & Huangyue Chen & Lingchen Kong, 2023. "A Survey on High-Dimensional Subspace Clustering," Mathematics, MDPI, vol. 11(2), pages 1-39, January.
    7. West, Robert M. & House, Allan O. & Keen, Justin & Ward, Vicky L., 2015. "Using the structure of social networks to map inter-agency relationships in public health services," Social Science & Medicine, Elsevier, vol. 145(C), pages 107-114.
    8. Chiara Di Maria & Antonino Abbruzzo & Gianfranco Lovison, 2022. "Networks as mediating variables: a Bayesian latent space approach," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 31(4), pages 1015-1035, October.
    9. Panknin, Lea & Boy, Karl-Friedrich & Henning, Christian H.C.A., 2024. "Can the European Green Deal be a game changer for sustainable food system transformation? A computational political economy approach," 2024 Annual Meeting, July 28-30, New Orleans, LA 343740, Agricultural and Applied Economics Association.
    10. Chen, Mingli & Fernández-Val, Iván & Weidner, Martin, 2021. "Nonlinear factor models for network and panel data," Journal of Econometrics, Elsevier, vol. 220(2), pages 296-324.
    11. Ando, Tomohiro & Bai, Jushan, 2021. "Large-scale generalized linear longitudinal data models with grouped patterns of unobserved heterogeneity," MPRA Paper 111431, University Library of Munich, Germany.
    12. Rawya Zreik & Pierre Latouche & Charles Bouveyron, 2017. "The dynamic random subgraph model for the clustering of evolving networks," Computational Statistics, Springer, vol. 32(2), pages 501-533, June.
    13. Lee, Kevin H. & Xue, Lingzhou & Hunter, David R., 2020. "Model-based clustering of time-evolving networks through temporal exponential-family random graph models," Journal of Multivariate Analysis, Elsevier, vol. 175(C).
    14. Ick Hoon Jin & Minjeong Jeon, 2019. "A Doubly Latent Space Joint Model for Local Item and Person Dependence in the Analysis of Item Response Data," Psychometrika, Springer;The Psychometric Society, vol. 84(1), pages 236-260, March.
    15. Chih‐Sheng Hsieh & Hans van Kippersluis, 2018. "Smoking initiation: Peers and personality," Quantitative Economics, Econometric Society, vol. 9(2), pages 825-863, July.
    16. Salter-Townshend, Michael & Murphy, Thomas Brendan, 2013. "Variational Bayesian inference for the Latent Position Cluster Model for network data," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 661-671.
    17. Wang, Tai-Chi & Phoa, Frederick Kin Hing, 2016. "A scanning method for detecting clustering pattern of both attribute and structure in social networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 445(C), pages 295-309.
    18. García Muñiz, Ana Salomé, 2013. "Input–output research in structural equivalence: Extracting paths and similarities," Economic Modelling, Elsevier, vol. 31(C), pages 796-803.
    19. Wang, Tao & Xiao, Shiying & Yan, Jun & Zhang, Panpan, 2021. "Regional and sectoral structures of the Chinese economy: A network perspective from multi-regional input–output tables," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 581(C).
    20. Fengqin Tang & Chunning Wang & Jinxia Su & Yuanyuan Wang, 2020. "Spectral clustering-based community detection using graph distance and node attributes," Computational Statistics, Springer, vol. 35(1), pages 69-94, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssb:v:78:y:2016:i:1:p:253-273. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.