IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v132y2019icp84-99.html
   My bibliography  Save this article

The quantile probability model

Author

Listed:
  • Heyard, Rachel
  • Held, Leonhard

Abstract

There is now a large literature on optimal predictive model selection. Bayesian methodology based on the g-prior has been developed for the linear model where the median probability model (MPM) has certain optimality features. However, it is unclear if these properties also hold in the generalised linear model (GLM) framework, frequently used in clinical prediction models. In an application to the GUSTO-I trial based on logistic regression where the goal was the development of a clinical prediction model for 30-day mortality, sensitivity of the MPM with respect to commonly used prior choices on the model space and the regression coefficients was encountered. This makes a decision on a final model difficult. Therefore an extension of the MPM has been developed, the quantile probability model (QPM), that uses posterior inclusion probabilities to define a drastically reduced set of candidate models. Predictive model selection criteria are then applied to identify the model with best predictive performance. In the application the QPM turns out to be independent of the prior choices considered and gives better predictive performance than the MPM. In addition, a novel batching method is presented to efficiently estimate the Monte Carlo standard error of the predictive model selection criterion.

Suggested Citation

  • Heyard, Rachel & Held, Leonhard, 2019. "The quantile probability model," Computational Statistics & Data Analysis, Elsevier, vol. 132(C), pages 84-99.
  • Handle: RePEc:eee:csdana:v:132:y:2019:i:c:p:84-99
    DOI: 10.1016/j.csda.2018.08.022
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947318302056
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2018.08.022?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Joyee Ghosh & Andrew E. Ghattas, 2015. "Bayesian Variable Selection Under Collinearity," The American Statistician, Taylor & Francis Journals, vol. 69(3), pages 165-173, August.
    2. Claeskens,Gerda & Hjort,Nils Lid, 2008. "Model Selection and Model Averaging," Cambridge Books, Cambridge University Press, number 9780521852258, October.
    3. Valen E. Johnson, 2008. "Properties of Bayes Factors Based on Test Statistics," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 35(2), pages 354-368, June.
    4. Liang, Feng & Paulo, Rui & Molina, German & Clyde, Merlise A. & Berger, Jim O., 2008. "Mixtures of g Priors for Bayesian Variable Selection," Journal of the American Statistical Association, American Statistical Association, vol. 103, pages 410-423, March.
    5. David J. Spiegelhalter & Nicola G. Best & Bradley P. Carlin & Angelika Van Der Linde, 2002. "Bayesian measures of model complexity and fit," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(4), pages 583-639, October.
    6. Jianhua Hu & Valen E. Johnson, 2009. "Bayesian model selection using test statistics," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(1), pages 143-158, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mark F. J. Steel, 2020. "Model Averaging and Its Use in Economics," Journal of Economic Literature, American Economic Association, vol. 58(3), pages 644-719, September.
    2. Xiaoquan Wen, 2017. "Robust Bayesian FDR Control Using Bayes Factors, with Applications to Multi-tissue eQTL Discovery," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 9(1), pages 28-49, June.
    3. Yu, Chi Wai & Clarke, Bertrand, 2010. "Asymptotics of Bayesian median loss estimation," Journal of Multivariate Analysis, Elsevier, vol. 101(9), pages 1950-1958, October.
    4. Xiaoquan Wen, 2014. "Bayesian model selection in complex linear systems, as illustrated in genetic association studies," Biometrics, The International Biometric Society, vol. 70(1), pages 73-83, March.
    5. Rockey, James & Temple, Jonathan, 2016. "Growth econometrics for agnostics and true believers," European Economic Review, Elsevier, vol. 81(C), pages 86-102.
    6. Katrin Wölfel & Christoph S. Weber, 2017. "Searching for the Fed’s reaction function," Empirical Economics, Springer, vol. 52(1), pages 191-227, February.
    7. Chrisovalantis Malesios & Antonis Skouloudis & Prasanta Kumar Dey & Fouad Ben Abdelaziz & Apostolos Kantartzis & Konstantinos Evangelinos, 2018. "Impact of small‐ and medium‐sized enterprises sustainability practices and performance on economic growth from a managerial perspective: Modeling considerations and empirical analysis results," Business Strategy and the Environment, Wiley Blackwell, vol. 27(7), pages 960-972, November.
    8. Mitra Robin & Dunson David, 2010. "Two-Level Stochastic Search Variable Selection in GLMs with Missing Predictors," The International Journal of Biostatistics, De Gruyter, vol. 6(1), pages 1-40, October.
    9. Enrique Moral-Benito, 2015. "Model Averaging In Economics: An Overview," Journal of Economic Surveys, Wiley Blackwell, vol. 29(1), pages 46-75, February.
    10. den Boer, Arnoud V. & Sierag, Dirk D., 2021. "Decision-based model selection," European Journal of Operational Research, Elsevier, vol. 290(2), pages 671-686.
    11. Thomas Fung & Joanna J.J. Wang & Eugene Seneta, 2014. "The Deviance Information Criterion in Comparison of Normal Mixing Models," International Statistical Review, International Statistical Institute, vol. 82(3), pages 411-421, December.
    12. Catalina A. Vallejos & Mark F. J. Steel, 2017. "Bayesian survival modelling of university outcomes," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 180(2), pages 613-631, February.
    13. Fantazzini, Dean & Shakleina, Marina & Yuras, Natalia, 2018. "Big Data for computing social well-being indices of the Russian population," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 50, pages 43-66.
    14. Dimitris Korobilis & Kenichi Shimizu, 2022. "Bayesian Approaches to Shrinkage and Sparse Estimation," Foundations and Trends(R) in Econometrics, now publishers, vol. 11(4), pages 230-354, June.
    15. Fouskakis, Dimitris & Ntzoufras, Ioannis & Perrakis, Konstantinos, 2020. "Variations of power-expected-posterior priors in normal regression models," Computational Statistics & Data Analysis, Elsevier, vol. 143(C).
    16. Fouskakis, D., 2012. "Bayesian variable selection in generalized linear models using a combination of stochastic optimization methods," European Journal of Operational Research, Elsevier, vol. 220(2), pages 414-422.
    17. S. C. Pandhare & T. V. Ramanathan, 2020. "The robust focused information criterion for strong mixing stochastic processes with $$\mathscr {L}^{2}$$ L 2 -differentiable parametric densities," Statistical Inference for Stochastic Processes, Springer, vol. 23(3), pages 637-663, October.
    18. Kuo-Jung Lee & Yi-Chi Chen, 2018. "Of needles and haystacks: revisiting growth determinants by robust Bayesian variable selection," Empirical Economics, Springer, vol. 54(4), pages 1517-1547, June.
    19. Michael J. Daniels & Arkendu S. Chatterjee & Chenguang Wang, 2012. "Bayesian Model Selection for Incomplete Data Using the Posterior Predictive Distribution," Biometrics, The International Biometric Society, vol. 68(4), pages 1055-1063, December.
    20. Mulder, Joris, 2014. "Prior adjusted default Bayes factors for testing (in)equality constrained hypotheses," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 448-463.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:132:y:2019:i:c:p:84-99. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.