IDEAS home Printed from https://ideas.repec.org/a/wly/envmet/v32y2021i6ne2679.html
   My bibliography  Save this article

Bayesian estimation of heterogeneous environments from animal movement data

Author

Listed:
  • Svetlana V. Tishkovskaya
  • Paul G. Blackwell

Abstract

We describe a flexible class of stochastic models that aim to capture key features of realistic patterns of animal movements observed in radio‐tracking and global positioning system telemetry studies. In the model, movements are represented as a diffusion‐based process evolving differently in heterogeneous regions. In this article, we extend the process of inference for heterogeneous movement models to the case in which boundaries of habitat regions are unknown and need to be estimated. Data augmentation is used in reconstructing the partition of the heterogeneous environment. The augmentation helps to diminish the impact of uncertainty about when and where the animal crosses habitat boundaries, and allows the extraction of additional information from the given observations. The approach to inference is Bayesian, using Markov chain Monte Carlo methods, allowing us to estimate both the parameters of the diffusion processes and the unknown boundaries. The suggested methodology is illustrated on simulated data and applied to real movement data from a radio‐tracking experiment on ibex. Some model checking and model choice issues are also discussed.

Suggested Citation

  • Svetlana V. Tishkovskaya & Paul G. Blackwell, 2021. "Bayesian estimation of heterogeneous environments from animal movement data," Environmetrics, John Wiley & Sons, Ltd., vol. 32(6), September.
  • Handle: RePEc:wly:envmet:v:32:y:2021:i:6:n:e2679
    DOI: 10.1002/env.2679
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/env.2679
    Download Restriction: no

    File URL: https://libkey.io/10.1002/env.2679?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. P. Gloaguen & S. Mahévas & E. Rivot & M. Woillez & J. Guitton & Y. Vermard & M. P. Etienne, 2015. "An autoregressive model to describe fishing vessel movement and activity," Environmetrics, John Wiley & Sons, Ltd., vol. 26(1), pages 17-28, February.
    2. Devin S. Johnson & Dana L. Thomas & Jay M. Ver Hoef & Aaron Christ, 2008. "A General Framework for the Analysis of Animal Resource Selection from Telemetry Data," Biometrics, The International Biometric Society, vol. 64(3), pages 968-976, September.
    3. Henry R. Scharf & Mevin B. Hooten & Ryan R. Wilson & George M. Durner & Todd C. Atwood, 2019. "Accounting for phenology in the analysis of animal movement," Biometrics, The International Biometric Society, vol. 75(3), pages 810-820, September.
    4. Harris, Keith J. & Blackwell, Paul G., 2013. "Flexible continuous-time modelling for heterogeneous animal movement," Ecological Modelling, Elsevier, vol. 255(C), pages 29-37.
    5. Henry Scharf & Mevin B. Hooten & Devin S. Johnson, 2017. "Imputation Approaches for Animal Movement Modeling," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 22(3), pages 335-352, September.
    6. Elizabeth Eisenhauer & Ephraim Hanks, 2020. "A lattice and random intermediate point sampling design for animal movement," Environmetrics, John Wiley & Sons, Ltd., vol. 31(6), September.
    7. P. G. Blackwell, 2003. "Bayesian inference for Markov processes with diffusion and discrete components," Biometrika, Biometrika Trust, vol. 90(3), pages 613-627, September.
    8. Mu Niu & Paul G. Blackwell & Anna Skarin, 2016. "Modeling interdependent animal movement in continuous time," Biometrics, The International Biometric Society, vol. 72(2), pages 315-324, June.
    9. David J. Spiegelhalter & Nicola G. Best & Bradley P. Carlin & Angelika Van Der Linde, 2002. "Bayesian measures of model complexity and fit," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(4), pages 583-639, October.
    10. Brett T. McClintock, 2017. "Incorporating Telemetry Error into Hidden Markov Models of Animal Movement Using Multiple Imputation," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 22(3), pages 249-269, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Toby A. Patterson & Alison Parton & Roland Langrock & Paul G. Blackwell & Len Thomas & Ruth King, 2017. "Statistical modelling of individual animal movement: an overview of key methods and a discussion of practical challenges," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 101(4), pages 399-438, October.
    2. Mu Niu & Fay Frost & Jordan E. Milner & Anna Skarin & Paul G. Blackwell, 2022. "Modelling group movement with behaviour switching in continuous time," Biometrics, The International Biometric Society, vol. 78(1), pages 286-299, March.
    3. James C. Russell & Ephraim M. Hanks & Murali Haran, 2016. "Dynamic Models of Animal Movement with Spatial Point Process Interactions," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 21(1), pages 22-40, March.
    4. A. Parton & P. G. Blackwell, 2017. "Bayesian Inference for Multistate ‘Step and Turn’ Animal Movement in Continuous Time," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 22(3), pages 373-392, September.
    5. Toryn L. J. Schafer & Christopher K. Wikle & Jay A. VonBank & Bart M. Ballard & Mitch D. Weegman, 2020. "A Bayesian Markov Model with Pólya-Gamma Sampling for Estimating Individual Behavior Transition Probabilities from Accelerometer Classifications," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 25(3), pages 365-382, September.
    6. Dhanushi A. Wijeyakulasuriya & Ephraim M. Hanks & Benjamin A. Shaby & Paul C. Cross, 2019. "Extreme Value-Based Methods for Modeling Elk Yearly Movements," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 24(1), pages 73-91, March.
    7. Michael A. Spence & Evalyne W. Muiruri & David L. Maxwell & Scott Davis & Dave Sheahan, 2021. "The application of continuous‐time Markov chain models in the analysis of choice flume experiments," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 70(4), pages 1103-1123, August.
    8. Xinyi Lu & Mevin B. Hooten & Ann M. Raiho & David K. Swanson & Carl A. Roland & Sarah E. Stehn, 2023. "Latent trajectory models for spatio‐temporal dynamics in Alaskan ecosystems," Biometrics, The International Biometric Society, vol. 79(4), pages 3664-3675, December.
    9. Zaineb L. Boulil & John W. Durban & Holly Fearnbach & Trevor W. Joyce & Samantha G. M. Leander & Henry R. Scharf, 2023. "Detecting Changes in Dynamic Social Networks Using Multiply-Labeled Movement Data," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 28(2), pages 243-259, June.
    10. Dhanushi A Wijeyakulasuriya & Elizabeth W Eisenhauer & Benjamin A Shaby & Ephraim M Hanks, 2020. "Machine learning for modeling animal movement," PLOS ONE, Public Library of Science, vol. 15(7), pages 1-30, July.
    11. Ethan Lawler & Kim Whoriskey & William H. Aeberhard & Chris Field & Joanna Mills Flemming, 2019. "The Conditionally Autoregressive Hidden Markov Model (CarHMM): Inferring Behavioural States from Animal Tracking Data Exhibiting Conditional Autocorrelation," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 24(4), pages 651-668, December.
    12. Buddhavarapu, Prasad & Bansal, Prateek & Prozzi, Jorge A., 2021. "A new spatial count data model with time-varying parameters," Transportation Research Part B: Methodological, Elsevier, vol. 150(C), pages 566-586.
    13. Mumtaz, Haroon & Theodoridis, Konstantinos, 2017. "Common and country specific economic uncertainty," Journal of International Economics, Elsevier, vol. 105(C), pages 205-216.
    14. Christina Leuker & Thorsten Pachur & Ralph Hertwig & Timothy J. Pleskac, 2019. "Do people exploit risk–reward structures to simplify information processing in risky choice?," Journal of the Economic Science Association, Springer;Economic Science Association, vol. 5(1), pages 76-94, August.
    15. Rubio, F.J. & Steel, M.F.J., 2011. "Inference for grouped data with a truncated skew-Laplace distribution," Computational Statistics & Data Analysis, Elsevier, vol. 55(12), pages 3218-3231, December.
    16. Alessandri, Piergiorgio & Mumtaz, Haroon, 2019. "Financial regimes and uncertainty shocks," Journal of Monetary Economics, Elsevier, vol. 101(C), pages 31-46.
    17. Leonardo Oliveira Martins & Hirohisa Kishino, 2010. "Distribution of distances between topologies and its effect on detection of phylogenetic recombination," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 62(1), pages 145-159, February.
    18. Tamal Ghosh & Malay Ghosh & Jerry J. Maples & Xueying Tang, 2022. "Multivariate Global-Local Priors for Small Area Estimation," Stats, MDPI, vol. 5(3), pages 1-16, July.
    19. Eibich, Peter & Ziebarth, Nicolas, 2014. "Examining the Structure of Spatial Health Effects in Germany Using Hierarchical Bayes Models," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 49, pages 305-320.
    20. Wu, Ji & Guo, Mengmeng & Chen, Minghua & Jeon, Bang Nam, 2019. "Market power and risk-taking of banks: Some semiparametric evidence from emerging economies," Emerging Markets Review, Elsevier, vol. 41(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:envmet:v:32:y:2021:i:6:n:e2679. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.interscience.wiley.com/jpages/1180-4009/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.