IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v290y2021i2p671-686.html
   My bibliography  Save this article

Decision-based model selection

Author

Listed:
  • den Boer, Arnoud V.
  • Sierag, Dirk D.

Abstract

A key step in data-driven decision making is the choice of a suitable mathematical model. Complex models that give an accurate description of reality may depend on many parameters that are difficult to estimate; in addition, the optimization problem corresponding to such models may be computationally intractable and only approximately solvable. Simple models with only a few unknown parameters may be misspecified, but also easier to estimate and optimize. With such different models and some initial data at hand, a decision maker would want to know which model produces the best decisions. In this paper we propose a decision-based model-selection method that addresses this question.

Suggested Citation

  • den Boer, Arnoud V. & Sierag, Dirk D., 2021. "Decision-based model selection," European Journal of Operational Research, Elsevier, vol. 290(2), pages 671-686.
  • Handle: RePEc:eee:ejores:v:290:y:2021:i:2:p:671-686
    DOI: 10.1016/j.ejor.2020.08.025
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221720307384
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2020.08.025?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Guillermo Gallego & Richard Ratliff & Sergey Shebalov, 2015. "A General Attraction Model and Sales-Based Linear Program for Network Revenue Management Under Customer Choice," Operations Research, INFORMS, vol. 63(1), pages 212-232, February.
    2. Yi-Hao Kao & Benjamin Van Roy, 2014. "Directed Principal Component Analysis," Operations Research, INFORMS, vol. 62(4), pages 957-972, August.
    3. Gérard P. Cachon & A. Gürhan Kök, 2007. "Implementation of the Newsvendor Model with Clearance Pricing: How to (and How Not to) Estimate a Salvage Value," Manufacturing & Service Operations Management, INFORMS, vol. 9(3), pages 276-290, October.
    4. David J. Spiegelhalter & Nicola G. Best & Bradley P. Carlin & Angelika Van Der Linde, 2002. "Bayesian measures of model complexity and fit," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(4), pages 583-639, October.
    5. Omar Besbes & Assaf Zeevi, 2015. "On the (Surprising) Sufficiency of Linear Models for Dynamic Pricing with Demand Learning," Management Science, INFORMS, vol. 61(4), pages 723-739, April.
    6. Omar Besbes & Robert Phillips & Assaf Zeevi, 2010. "Testing the Validity of a Demand Model: An Operations Perspective," Manufacturing & Service Operations Management, INFORMS, vol. 12(1), pages 162-183, June.
    7. Claeskens,Gerda & Hjort,Nils Lid, 2008. "Model Selection and Model Averaging," Cambridge Books, Cambridge University Press, number 9780521852258, January.
    8. Soonhui Lee & Tito Homem-de-Mello & Anton Kleywegt, 2012. "Newsvendor-type models with decision-dependent uncertainty," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 76(2), pages 189-221, October.
    9. William L. Cooper & Tito Homem-de-Mello & Anton J. Kleywegt, 2006. "Models of the Spiral-Down Effect in Revenue Management," Operations Research, INFORMS, vol. 54(5), pages 968-987, October.
    10. Robert C. Nickerson & Dean W. Boyd, 1980. "The Use and Value of Models in Decision Analysis," Operations Research, INFORMS, vol. 28(1), pages 139-155, February.
    11. William L. Cooper & Tito Homem-de-Mello & Anton J. Kleywegt, 2015. "Learning and Pricing with Models That Do Not Explicitly Incorporate Competition," Operations Research, INFORMS, vol. 63(1), pages 86-103, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Erkip, Nesim Kohen, 2023. "Can accessing much data reshape the theory? Inventory theory under the challenge of data-driven systems," European Journal of Operational Research, Elsevier, vol. 308(3), pages 949-959.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mila Nambiar & David Simchi-Levi & He Wang, 2019. "Dynamic Learning and Pricing with Model Misspecification," Management Science, INFORMS, vol. 65(11), pages 4980-5000, November.
    2. William L. Cooper & Tito Homem-de-Mello & Anton J. Kleywegt, 2015. "Learning and Pricing with Models That Do Not Explicitly Incorporate Competition," Operations Research, INFORMS, vol. 63(1), pages 86-103, February.
    3. Opher Baron & Iman Hajizadeh & Joseph Milner, 2011. "Now Playing: DVD Purchasing for a Multilocation Rental Firm," Manufacturing & Service Operations Management, INFORMS, vol. 13(2), pages 209-226, April.
    4. Adam J. Mersereau, 2015. "Demand Estimation from Censored Observations with Inventory Record Inaccuracy," Manufacturing & Service Operations Management, INFORMS, vol. 17(3), pages 335-349, July.
    5. Linda V. Green & Sergei Savin & Nicos Savva, 2013. "“Nursevendor Problem”: Personnel Staffing in the Presence of Endogenous Absenteeism," Management Science, INFORMS, vol. 59(10), pages 2237-2256, October.
    6. Soonhui Lee & Tito Homem-de-Mello & Anton Kleywegt, 2012. "Newsvendor-type models with decision-dependent uncertainty," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 76(2), pages 189-221, October.
    7. Thomas Loots & Arnoud V. den Boer, 2023. "Data‐driven collusion and competition in a pricing duopoly with multinomial logit demand," Production and Operations Management, Production and Operations Management Society, vol. 32(4), pages 1169-1186, April.
    8. Thomas Fung & Joanna J.J. Wang & Eugene Seneta, 2014. "The Deviance Information Criterion in Comparison of Normal Mixing Models," International Statistical Review, International Statistical Institute, vol. 82(3), pages 411-421, December.
    9. Omar Besbes & Assaf Zeevi, 2015. "On the (Surprising) Sufficiency of Linear Models for Dynamic Pricing with Demand Learning," Management Science, INFORMS, vol. 61(4), pages 723-739, April.
    10. Erkip, Nesim Kohen, 2023. "Can accessing much data reshape the theory? Inventory theory under the challenge of data-driven systems," European Journal of Operational Research, Elsevier, vol. 308(3), pages 949-959.
    11. Heyard, Rachel & Held, Leonhard, 2019. "The quantile probability model," Computational Statistics & Data Analysis, Elsevier, vol. 132(C), pages 84-99.
    12. Alexandru CONSTÃNGIOARÃ & Gyula-Laszlo FLORIAN, 2019. "Pricing Optimization Using R," Proceedings of the INTERNATIONAL MANAGEMENT CONFERENCE, Faculty of Management, Academy of Economic Studies, Bucharest, Romania, vol. 13(1), pages 142-149, November.
    13. Eren B. Çil & Martin A. Lariviere, 2013. "Saving Seats for Strategic Customers," Operations Research, INFORMS, vol. 61(6), pages 1321-1332, December.
    14. S. C. Pandhare & T. V. Ramanathan, 2020. "The robust focused information criterion for strong mixing stochastic processes with $$\mathscr {L}^{2}$$ L 2 -differentiable parametric densities," Statistical Inference for Stochastic Processes, Springer, vol. 23(3), pages 637-663, October.
    15. Omar Besbes & Robert Phillips & Assaf Zeevi, 2010. "Testing the Validity of a Demand Model: An Operations Perspective," Manufacturing & Service Operations Management, INFORMS, vol. 12(1), pages 162-183, June.
    16. Ando, Tomohiro & Tsay, Ruey, 2010. "Predictive likelihood for Bayesian model selection and averaging," International Journal of Forecasting, Elsevier, vol. 26(4), pages 744-763, October.
    17. Alice X. D. Dong & Jennifer S. K. Chan & Gareth W. Peters, 2014. "Risk Margin Quantile Function Via Parametric and Non-Parametric Bayesian Quantile Regression," Papers 1402.2492, arXiv.org.
    18. G. Avlogiaris & A. C. Micheas & K. Zografos, 2019. "A Criterion for Local Model Selection," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 81(2), pages 406-444, December.
    19. Strauss, Arne K. & Klein, Robert & Steinhardt, Claudius, 2018. "A review of choice-based revenue management: Theory and methods," European Journal of Operational Research, Elsevier, vol. 271(2), pages 375-387.
    20. Lejeune, Miguel A. & Dehghanian, Payman & Ma, Wenbo, 2024. "Profit-based unit commitment models with price-responsive decision-dependent uncertainty," European Journal of Operational Research, Elsevier, vol. 314(3), pages 1052-1064.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:290:y:2021:i:2:p:671-686. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.