IDEAS home Printed from https://ideas.repec.org/a/bla/istatr/v82y2014i3p411-421.html
   My bibliography  Save this article

The Deviance Information Criterion in Comparison of Normal Mixing Models

Author

Listed:
  • Thomas Fung
  • Joanna J.J. Wang
  • Eugene Seneta

Abstract

type="main" xml:id="insr12063-abs-0001"> Model selection from several non-nested models by using the deviance information criterion within Bayesian inference Using Gibbs Sampling (BUGS) software needs to be treated with caution. This is particularly important if one can specify a model in various mixing representations, as for the normal variance-mean mixing distribution occurring in financial contexts. We propose a procedure to compare goodness of fit of several non-nested models, which uses BUGS software in part.

Suggested Citation

  • Thomas Fung & Joanna J.J. Wang & Eugene Seneta, 2014. "The Deviance Information Criterion in Comparison of Normal Mixing Models," International Statistical Review, International Statistical Institute, vol. 82(3), pages 411-421, December.
  • Handle: RePEc:bla:istatr:v:82:y:2014:i:3:p:411-421
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1111/insr.12063
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Elisa Luciano & Wim Schoutens, 2006. "A multivariate jump-driven financial asset model," Quantitative Finance, Taylor & Francis Journals, vol. 6(5), pages 385-402.
    2. Thomas Fung & Eugene Seneta, 2010. "Modelling and Estimation for Bivariate Financial Returns," International Statistical Review, International Statistical Institute, vol. 78(1), pages 117-133, April.
    3. David J. Spiegelhalter & Nicola G. Best & Bradley P. Carlin & Angelika Van Der Linde, 2002. "Bayesian measures of model complexity and fit," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(4), pages 583-639, October.
    4. Branco, Márcia D. & Dey, Dipak K., 2001. "A General Class of Multivariate Skew-Elliptical Distributions," Journal of Multivariate Analysis, Elsevier, vol. 79(1), pages 99-113, October.
    5. Richard Finlay & Eugene Seneta, 2008. "Stationary‐Increment Variance‐Gamma and t Models: Simulation and Parameter Estimation," International Statistical Review, International Statistical Institute, vol. 76(2), pages 167-186, August.
    6. Yong Li & Zeng Tao & Jun Yu, "undated". "Robust Deviance Information Criterion for Latent Variable Models," Working Papers CoFie-04-2012, Singapore Management University, Sim Kee Boon Institute for Financial Economics.
    7. Claeskens,Gerda & Hjort,Nils Lid, 2008. "Model Selection and Model Averaging," Cambridge Books, Cambridge University Press, number 9780521852258, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Ping & Wang, Jianwen & Atkinson, Peter M., 2019. "Identifying the spatio-temporal risk variability of avian influenza A H7N9 in China," Ecological Modelling, Elsevier, vol. 414(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Thomas Fung & Eugene Seneta, 2010. "Modelling and Estimation for Bivariate Financial Returns," International Statistical Review, International Statistical Institute, vol. 78(1), pages 117-133, April.
    2. Vilca, Filidor & Balakrishnan, N. & Zeller, Camila Borelli, 2014. "Multivariate Skew-Normal Generalized Hyperbolic distribution and its properties," Journal of Multivariate Analysis, Elsevier, vol. 128(C), pages 73-85.
    3. Buchmann, Boris & Kaehler, Benjamin & Maller, Ross & Szimayer, Alexander, 2017. "Multivariate subordination using generalised Gamma convolutions with applications to Variance Gamma processes and option pricing," Stochastic Processes and their Applications, Elsevier, vol. 127(7), pages 2208-2242.
    4. Lin, Edward M.H. & Sun, Edward W. & Yu, Min-Teh, 2020. "Behavioral data-driven analysis with Bayesian method for risk management of financial services," International Journal of Production Economics, Elsevier, vol. 228(C).
    5. M. Teimourian & T. Baghfalaki & M. Ganjali & D. Berridge, 2015. "Joint modeling of mixed skewed continuous and ordinal longitudinal responses: a Bayesian approach," Journal of Applied Statistics, Taylor & Francis Journals, vol. 42(10), pages 2233-2256, October.
    6. Li, Yong & Zeng, Tao & Yu, Jun, 2014. "A new approach to Bayesian hypothesis testing," Journal of Econometrics, Elsevier, vol. 178(P3), pages 602-612.
    7. den Boer, Arnoud V. & Sierag, Dirk D., 2021. "Decision-based model selection," European Journal of Operational Research, Elsevier, vol. 290(2), pages 671-686.
    8. Sarmiento, Miguel & Galán, Jorge E., 2014. "Heterogeneous effects of risk-taking on bank efficiency : a stochastic frontier model with random coefficients," DES - Working Papers. Statistics and Econometrics. WS ws142013, Universidad Carlos III de Madrid. Departamento de Estadística.
    9. Cancho, Vicente G. & Dey, Dipak K. & Lachos, Victor H. & Andrade, Marinho G., 2011. "Bayesian nonlinear regression models with scale mixtures of skew-normal distributions: Estimation and case influence diagnostics," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 588-602, January.
    10. Ghosh, Pulak & Bayes, C.L. & Lachos, V.H., 2009. "A robust Bayesian approach to null intercept measurement error model with application to dental data," Computational Statistics & Data Analysis, Elsevier, vol. 53(4), pages 1066-1079, February.
    11. Heyard, Rachel & Held, Leonhard, 2019. "The quantile probability model," Computational Statistics & Data Analysis, Elsevier, vol. 132(C), pages 84-99.
    12. Olcay Arslan, 2015. "Variance-mean mixture of the multivariate skew normal distribution," Statistical Papers, Springer, vol. 56(2), pages 353-378, May.
    13. Boris Buchmann & Benjamin Kaehler & Ross Maller & Alexander Szimayer, 2015. "Multivariate Subordination using Generalised Gamma Convolutions with Applications to V.G. Processes and Option Pricing," Papers 1502.03901, arXiv.org, revised Oct 2016.
    14. S. C. Pandhare & T. V. Ramanathan, 2020. "The robust focused information criterion for strong mixing stochastic processes with $$\mathscr {L}^{2}$$ L 2 -differentiable parametric densities," Statistical Inference for Stochastic Processes, Springer, vol. 23(3), pages 637-663, October.
    15. Oludare Ariyo & Emmanuel Lesaffre & Geert Verbeke & Adrian Quintero, 2022. "Bayesian Model Selection for Longitudinal Count Data," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 84(2), pages 516-547, November.
    16. Jorge E. Galán & Michael G. Pollitt, 2014. "Inefficiency persistence and heterogeneity in Colombian electricity distribution utilities," Working Papers EPRG 1403, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
    17. Joshua C.C. Chan & Angelia L. Grant, 2014. "Issues in Comparing Stochastic Volatility Models Using the Deviance Information Criterion," CAMA Working Papers 2014-51, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    18. De la Cruz, Rolando, 2008. "Bayesian non-linear regression models with skew-elliptical errors: Applications to the classification of longitudinal profiles," Computational Statistics & Data Analysis, Elsevier, vol. 53(2), pages 436-449, December.
    19. Jorge Galán & Helena Veiga & Michael Wiper, 2014. "Bayesian estimation of inefficiency heterogeneity in stochastic frontier models," Journal of Productivity Analysis, Springer, vol. 42(1), pages 85-101, August.
    20. V. G. Cancho & Reiko Aoki & V. H. Lachos, 2008. "Bayesian analysis for a skew extension of the multivariate null intercept measurement error model," Journal of Applied Statistics, Taylor & Francis Journals, vol. 35(11), pages 1239-1251.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:istatr:v:82:y:2014:i:3:p:411-421. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/isiiinl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.