IDEAS home Printed from https://ideas.repec.org/a/spr/psycho/v89y2024i2d10.1007_s11336-023-09940-7.html
   My bibliography  Save this article

Restricted Latent Class Models for Nominal Response Data: Identifiability and Estimation

Author

Listed:
  • Ying Liu

    (University of Illinois at Urbana-Champaign)

  • Steven Andrew Culpepper

    (University of Illinois at Urbana-Champaign)

Abstract

Restricted latent class models (RLCMs) provide an important framework for diagnosing and classifying respondents on a collection of multivariate binary responses. Recent research made significant advances in theory for establishing identifiability conditions for RLCMs with binary and polytomous response data. Multiclass data, which are unordered nominal response data, are also widely collected in the social sciences and psychometrics via forced-choice inventories and multiple choice tests. We establish new identifiability conditions for parameters of RLCMs for multiclass data and discuss the implications for substantive applications. The new identifiability conditions are applicable to a wealth of RLCMs for polytomous and nominal response data. We propose a Bayesian framework for inferring model parameters, assess parameter recovery in a Monte Carlo simulation study, and present an application of the model to a real dataset.

Suggested Citation

  • Ying Liu & Steven Andrew Culpepper, 2024. "Restricted Latent Class Models for Nominal Response Data: Identifiability and Estimation," Psychometrika, Springer;The Psychometric Society, vol. 89(2), pages 592-625, June.
  • Handle: RePEc:spr:psycho:v:89:y:2024:i:2:d:10.1007_s11336-023-09940-7
    DOI: 10.1007/s11336-023-09940-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11336-023-09940-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11336-023-09940-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:psycho:v:89:y:2024:i:2:d:10.1007_s11336-023-09940-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.