IDEAS home Printed from https://ideas.repec.org/a/spr/psycho/v88y2023i2d10.1007_s11336-023-09904-x.html
   My bibliography  Save this article

Identifiability of Hidden Markov Models for Learning Trajectories in Cognitive Diagnosis

Author

Listed:
  • Ying Liu

    (University of Illinois at Urbana-Champaign)

  • Steven Andrew Culpepper

    (University of Illinois at Urbana-Champaign)

  • Yuguo Chen

    (University of Illinois at Urbana-Champaign)

Abstract

Hidden Markov models (HMMs) have been applied in various domains, which makes the identifiability issue of HMMs popular among researchers. Classical identifiability conditions shown in previous studies are too strong for practical analysis. In this paper, we propose generic identifiability conditions for discrete time HMMs with finite state space. Also, recent studies about cognitive diagnosis models (CDMs) applied first-order HMMs to track changes in attributes related to learning. However, the application of CDMs requires a known $$\varvec{Q}$$ Q matrix to infer the underlying structure between latent attributes and items, and the identifiability constraints of the model parameters should also be specified. We propose generic identifiability constraints for our restricted HMM and then estimate the model parameters, including the $$\varvec{Q}$$ Q matrix, through a Bayesian framework. We present Monte Carlo simulation results to support our conclusion and apply the developed model to a real dataset.

Suggested Citation

  • Ying Liu & Steven Andrew Culpepper & Yuguo Chen, 2023. "Identifiability of Hidden Markov Models for Learning Trajectories in Cognitive Diagnosis," Psychometrika, Springer;The Psychometric Society, vol. 88(2), pages 361-386, June.
  • Handle: RePEc:spr:psycho:v:88:y:2023:i:2:d:10.1007_s11336-023-09904-x
    DOI: 10.1007/s11336-023-09904-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11336-023-09904-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11336-023-09904-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chen, Yunxiao & Liu, Jingchen & Xu, Gongjun & Ying, Zhiliang, 2015. "Statistical analysis of Q-matrix based diagnostic classification models," LSE Research Online Documents on Economics 103183, London School of Economics and Political Science, LSE Library.
    2. I. Róbert Sipos & Attila Ceffer & János Levendovszky, 2017. "Parallel Optimization of Sparse Portfolios with AR-HMMs," Computational Economics, Springer;Society for Computational Economics, vol. 49(4), pages 563-578, April.
    3. Stéphane Bonhomme & Koen Jochmans & Jean-Marc Robin, 2014. "Estimating Multivariate Latent-Structure Models," SciencePo Working papers Main hal-01097135, HAL.
    4. Jean-Marc Robin & Stéphane Bonhomme & Koen Jochmans, 2014. "Estimating Multivariate Latent-Structure Models," Sciences Po Economics Discussion Papers 2014-18, Sciences Po Departement of Economics.
    5. Chia-Yi Chiu & Jeffrey Douglas & Xiaodong Li, 2009. "Cluster Analysis for Cognitive Diagnosis: Theory and Applications," Psychometrika, Springer;The Psychometric Society, vol. 74(4), pages 633-665, December.
    6. repec:hal:spmain:info:hdl:2441/etefo8s8r89oamhnhiclqr530 is not listed on IDEAS
    7. Yunxiao Chen & Jingchen Liu & Gongjun Xu & Zhiliang Ying, 2015. "Statistical Analysis of Q -Matrix Based Diagnostic Classification Models," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(510), pages 850-866, June.
    8. Yinyin Chen & Steven Culpepper & Feng Liang, 2020. "A Sparse Latent Class Model for Cognitive Diagnosis," Psychometrika, Springer;The Psychometric Society, vol. 85(1), pages 121-153, March.
    9. Yinghan Chen & Ying Liu & Steven Andrew Culpepper & Yuguo Chen, 2021. "Inferring the Number of Attributes for the Exploratory DINA Model," Psychometrika, Springer;The Psychometric Society, vol. 86(1), pages 30-64, March.
    10. Jimmy de la Torre, 2011. "The Generalized DINA Model Framework," Psychometrika, Springer;The Psychometric Society, vol. 76(2), pages 179-199, April.
    11. Jimmy Torre, 2011. "Erratum to: The Generalized DINA Model Framework," Psychometrika, Springer;The Psychometric Society, vol. 76(3), pages 510-510, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kazuhiro Yamaguchi, 2023. "Bayesian Analysis Methods for Two-Level Diagnosis Classification Models," Journal of Educational and Behavioral Statistics, , vol. 48(6), pages 773-809, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. James Joseph Balamuta & Steven Andrew Culpepper, 2022. "Exploratory Restricted Latent Class Models with Monotonicity Requirements under PÒLYA–GAMMA Data Augmentation," Psychometrika, Springer;The Psychometric Society, vol. 87(3), pages 903-945, September.
    2. Steven Andrew Culpepper, 2023. "A Note on Weaker Conditions for Identifying Restricted Latent Class Models for Binary Responses," Psychometrika, Springer;The Psychometric Society, vol. 88(1), pages 158-174, March.
    3. Motonori Oka & Kensuke Okada, 2023. "Scalable Bayesian Approach for the Dina Q-Matrix Estimation Combining Stochastic Optimization and Variational Inference," Psychometrika, Springer;The Psychometric Society, vol. 88(1), pages 302-331, March.
    4. Yinghan Chen & Steven Andrew Culpepper & Yuguo Chen, 2023. "Bayesian Inference for an Unknown Number of Attributes in Restricted Latent Class Models," Psychometrika, Springer;The Psychometric Society, vol. 88(2), pages 613-635, June.
    5. Xin Xu & Guanhua Fang & Jinxin Guo & Zhiliang Ying & Susu Zhang, 2024. "Diagnostic Classification Models for Testlets: Methods and Theory," Psychometrika, Springer;The Psychometric Society, vol. 89(3), pages 851-876, September.
    6. Peida Zhan & Wen-Chung Wang & Xiaomin Li, 2020. "A Partial Mastery, Higher-Order Latent Structural Model for Polytomous Attributes in Cognitive Diagnostic Assessments," Journal of Classification, Springer;The Classification Society, vol. 37(2), pages 328-351, July.
    7. Chen-Wei Liu & Björn Andersson & Anders Skrondal, 2020. "A Constrained Metropolis–Hastings Robbins–Monro Algorithm for Q Matrix Estimation in DINA Models," Psychometrika, Springer;The Psychometric Society, vol. 85(2), pages 322-357, June.
    8. Chun Wang & Jing Lu, 2021. "Learning Attribute Hierarchies From Data: Two Exploratory Approaches," Journal of Educational and Behavioral Statistics, , vol. 46(1), pages 58-84, February.
    9. Hans Friedrich Köhn & Chia-Yi Chiu, 2021. "A Unified Theory of the Completeness of Q-Matrices for the DINA Model," Journal of Classification, Springer;The Classification Society, vol. 38(3), pages 500-518, October.
    10. Chenchen Ma & Jimmy Torre & Gongjun Xu, 2023. "Bridging Parametric and Nonparametric Methods in Cognitive Diagnosis," Psychometrika, Springer;The Psychometric Society, vol. 88(1), pages 51-75, March.
    11. Yuqi Gu, 2023. "Generic Identifiability of the DINA Model and Blessing of Latent Dependence," Psychometrika, Springer;The Psychometric Society, vol. 88(1), pages 117-131, March.
    12. Yinghan Chen & Ying Liu & Steven Andrew Culpepper & Yuguo Chen, 2021. "Inferring the Number of Attributes for the Exploratory DINA Model," Psychometrika, Springer;The Psychometric Society, vol. 86(1), pages 30-64, March.
    13. Jing Ouyang & Gongjun Xu, 2022. "Identifiability of Latent Class Models with Covariates," Psychometrika, Springer;The Psychometric Society, vol. 87(4), pages 1343-1360, December.
    14. Yuqi Gu & Gongjun Xu, 2019. "The Sufficient and Necessary Condition for the Identifiability and Estimability of the DINA Model," Psychometrika, Springer;The Psychometric Society, vol. 84(2), pages 468-483, June.
    15. Yinyin Chen & Steven Culpepper & Feng Liang, 2020. "A Sparse Latent Class Model for Cognitive Diagnosis," Psychometrika, Springer;The Psychometric Society, vol. 85(1), pages 121-153, March.
    16. Yinghan Chen & Shiyu Wang, 2023. "Bayesian Estimation of Attribute Hierarchy for Cognitive Diagnosis Models," Journal of Educational and Behavioral Statistics, , vol. 48(6), pages 810-841, December.
    17. Chenchen Ma & Jing Ouyang & Gongjun Xu, 2023. "Learning Latent and Hierarchical Structures in Cognitive Diagnosis Models," Psychometrika, Springer;The Psychometric Society, vol. 88(1), pages 175-207, March.
    18. Jimmy de la Torre & Xue-Lan Qiu & Kevin Carl Santos, 2022. "An Empirical Q-Matrix Validation Method for the Polytomous G-DINA Model," Psychometrika, Springer;The Psychometric Society, vol. 87(2), pages 693-724, June.
    19. Yuqi Gu & Jingchen Liu & Gongjun Xu & Zhiliang Ying, 2018. "Hypothesis Testing of the Q-matrix," Psychometrika, Springer;The Psychometric Society, vol. 83(3), pages 515-537, September.
    20. Kazuhiro Yamaguchi, 2023. "Bayesian Analysis Methods for Two-Level Diagnosis Classification Models," Journal of Educational and Behavioral Statistics, , vol. 48(6), pages 773-809, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:psycho:v:88:y:2023:i:2:d:10.1007_s11336-023-09904-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.