IDEAS home Printed from https://ideas.repec.org/a/taf/jnlasa/v107y2012i497p223-232.html
   My bibliography  Save this article

Likelihood-Based Selection and Sharp Parameter Estimation

Author

Listed:
  • Xiaotong Shen
  • Wei Pan
  • Yunzhang Zhu

Abstract

In high-dimensional data analysis, feature selection becomes one effective means for dimension reduction, which proceeds with parameter estimation. Concerning accuracy of selection and estimation, we study nonconvex constrained and regularized likelihoods in the presence of nuisance parameters. Theoretically, we show that constrained L 0 likelihood and its computational surrogate are optimal in that they achieve feature selection consistency and sharp parameter estimation, under one necessary condition required for any method to be selection consistent and to achieve sharp parameter estimation. It permits up to exponentially many candidate features. Computationally, we develop difference convex methods to implement the computational surrogate through prime and dual subproblems. These results establish a central role of L 0 constrained and regularized likelihoods in feature selection and parameter estimation involving selection. As applications of the general method and theory, we perform feature selection in linear regression and logistic regression, and estimate a precision matrix in Gaussian graphical models. In these situations, we gain a new theoretical insight and obtain favorable numerical results. Finally, we discuss an application to predict the metastasis status of breast cancer patients with their gene expression profiles. This article has online supplementary material.

Suggested Citation

  • Xiaotong Shen & Wei Pan & Yunzhang Zhu, 2012. "Likelihood-Based Selection and Sharp Parameter Estimation," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(497), pages 223-232, March.
  • Handle: RePEc:taf:jnlasa:v:107:y:2012:i:497:p:223-232
    DOI: 10.1080/01621459.2011.645783
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/01621459.2011.645783
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/01621459.2011.645783?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlasa:v:107:y:2012:i:497:p:223-232. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UASA20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.