IDEAS home Printed from https://ideas.repec.org/a/spr/operea/v22y2022i2d10.1007_s12351-020-00574-6.html
   My bibliography  Save this article

A robust augmented ε-constraint method (AUGMECON-R) for finding exact solutions of multi-objective linear programming problems

Author

Listed:
  • Alexandros Nikas

    (National Technical University of Athens)

  • Angelos Fountoulakis

    (National Technical University of Athens)

  • Aikaterini Forouli

    (National Technical University of Athens)

  • Haris Doukas

    (National Technical University of Athens)

Abstract

Systems can be unstructured, uncertain and complex, and their optimisation often requires operational research techniques. In this study, we introduce AUGMECON-R, a robust variant of the augmented ε-constraint algorithm, for solving multi-objective linear programming problems, by drawing from the weaknesses of AUGMECON 2, one of the most widely used improvements of the ε-constraint method. These weaknesses can be summarised in the ineffective handling of the true nadir points of the objective functions and, most notably, in the significant amount of time required to apply it as more objective functions are added to a problem. We subsequently apply AUGMECON-R in comparison with its predecessor, in both a set of reference problems from the literature and a series of significantly more complex problems of four to six objective functions. Our findings suggest that the proposed method greatly outperforms its predecessor, by solving significantly less models in emphatically less time and allowing easy and timely solution of hard or practically impossible, in terms of time and processing requirements, problems of numerous objective functions. AUGMECON-R, furthermore, solves the limitation of unknown nadir points, by using very low or zero-value lower bounds without surging the time and resources required.

Suggested Citation

  • Alexandros Nikas & Angelos Fountoulakis & Aikaterini Forouli & Haris Doukas, 2022. "A robust augmented ε-constraint method (AUGMECON-R) for finding exact solutions of multi-objective linear programming problems," Operational Research, Springer, vol. 22(2), pages 1291-1332, April.
  • Handle: RePEc:spr:operea:v:22:y:2022:i:2:d:10.1007_s12351-020-00574-6
    DOI: 10.1007/s12351-020-00574-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s12351-020-00574-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s12351-020-00574-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Liu, Songsong & Papageorgiou, Lazaros G., 2013. "Multiobjective optimisation of production, distribution and capacity planning of global supply chains in the process industry," Omega, Elsevier, vol. 41(2), pages 369-382.
    2. Hombach, Laura Elisabeth & Walther, Grit, 2015. "Pareto-efficient legal regulation of the (bio)fuel market using a bi-objective optimization model," European Journal of Operational Research, Elsevier, vol. 245(1), pages 286-295.
    3. Xidonas, Panagiotis & Mavrotas, George & Zopounidis, Constantin & Psarras, John, 2011. "IPSSIS: An integrated multicriteria decision support system for equity portfolio construction and selection," European Journal of Operational Research, Elsevier, vol. 210(2), pages 398-409, April.
    4. Dimitris Bertsimas & Melvyn Sim, 2004. "The Price of Robustness," Operations Research, INFORMS, vol. 52(1), pages 35-53, February.
    5. Laumanns, Marco & Thiele, Lothar & Zitzler, Eckart, 2006. "An efficient, adaptive parameter variation scheme for metaheuristics based on the epsilon-constraint method," European Journal of Operational Research, Elsevier, vol. 169(3), pages 932-942, March.
    6. Florios, Kostas & Mavrotas, George, 2014. "Generation of the exact Pareto set in multi-objective traveling salesman and set covering problems," MPRA Paper 105074, University Library of Munich, Germany.
    7. Saedinia, R. & Vahdani, Behnam & Etebari, F. & Afshar Nadjafi, B., 2019. "Robust gasoline closed loop supply chain design with redistricting, service sharing and intra-district service transfer," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 123(C), pages 121-141.
    8. Mohammadi, Mehrdad & Jula, Payman & Tavakkoli-Moghaddam, Reza, 2019. "Reliable single-allocation hub location problem with disruptions," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 123(C), pages 90-120.
    9. Shah, Ruchit & Reed, Patrick, 2011. "Comparative analysis of multiobjective evolutionary algorithms for random and correlated instances of multiobjective d-dimensional knapsack problems," European Journal of Operational Research, Elsevier, vol. 211(3), pages 466-479, June.
    10. Carrizosa, Emilio & Guerrero, Vanesa & Romero Morales, Dolores, 2019. "Visualization of complex dynamic datasets by means of mathematical optimization," Omega, Elsevier, vol. 86(C), pages 125-136.
    11. Doukas, Haris & Nikas, Alexandros, 2020. "Decision support models in climate policy," European Journal of Operational Research, Elsevier, vol. 280(1), pages 1-24.
    12. Cambero, Claudia & Sowlati, Taraneh, 2016. "Incorporating social benefits in multi-objective optimization of forest-based bioenergy and biofuel supply chains," Applied Energy, Elsevier, vol. 178(C), pages 721-735.
    13. Canales-Bustos, Linda & Santibañez-González, Ernesto & Candia-Véjar, Alfredo, 2017. "A multi-objective optimization model for the design of an effective decarbonized supply chain in mining," International Journal of Production Economics, Elsevier, vol. 193(C), pages 449-464.
    14. Ceren Tuncer Şakar & Murat Köksalan, 2013. "A stochastic programming approach to multicriteria portfolio optimization," Journal of Global Optimization, Springer, vol. 57(2), pages 299-314, October.
    15. Mavrotas, George & Florios, Kostas, 2013. "An improved version of the augmented epsilon-constraint method (AUGMECON2) for finding the exact Pareto set in Multi-Objective Integer Programming problems," MPRA Paper 105034, University Library of Munich, Germany.
    16. Zhang, Weihua & Reimann, Marc, 2014. "A simple augmented ∊-constraint method for multi-objective mathematical integer programming problems," European Journal of Operational Research, Elsevier, vol. 234(1), pages 15-24.
    17. Mousazadeh, M. & Torabi, S. Ali & Pishvaee, M.S. & Abolhassani, F., 2018. "Accessible, stable, and equitable health service network redesign: A robust mixed possibilistic-flexible approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 111(C), pages 113-129.
    18. Resat, Hamdi G. & Turkay, Metin, 2015. "Design and operation of intermodal transportation network in the Marmara region of Turkey," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 83(C), pages 16-33.
    19. Dimitris Bertsimas & David B. Brown, 2009. "Constructing Uncertainty Sets for Robust Linear Optimization," Operations Research, INFORMS, vol. 57(6), pages 1483-1495, December.
    20. Aharon Ben-Tal & Dimitris Bertsimas & David B. Brown, 2010. "A Soft Robust Model for Optimization Under Ambiguity," Operations Research, INFORMS, vol. 58(4-part-2), pages 1220-1234, August.
    21. Paul, Nicholas R. & Lunday, Brian J. & Nurre, Sarah G., 2017. "A multiobjective, maximal conditional covering location problem applied to the relocation of hierarchical emergency response facilities," Omega, Elsevier, vol. 66(PA), pages 147-158.
    22. Zhou, Liping & Geng, Na & Jiang, Zhibin & Wang, Xiuxian, 2018. "Multi-objective capacity allocation of hospital wards combining revenue and equity," Omega, Elsevier, vol. 81(C), pages 220-233.
    23. Martello, Silvano & Monaci, Michele, 2020. "Algorithmic approaches to the multiple knapsack assignment problem," Omega, Elsevier, vol. 90(C).
    24. Xiong, Beibei & Chen, Haoxun & An, Qingxian & Wu, Jie, 2019. "A multi-objective distance friction minimization model for performance assessment through data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 279(1), pages 132-142.
    25. Katrin Witting & Sina Ober-Blöbaum & Michael Dellnitz, 2013. "A variational approach to define robustness for parametric multiobjective optimization problems," Journal of Global Optimization, Springer, vol. 57(2), pages 331-345, October.
    26. Khalili-Damghani, Kaveh & Amiri, Maghsoud, 2012. "Solving binary-state multi-objective reliability redundancy allocation series-parallel problem using efficient epsilon-constraint, multi-start partial bound enumeration algorithm, and DEA," Reliability Engineering and System Safety, Elsevier, vol. 103(C), pages 35-44.
    27. Sylva, John & Crema, Alejandro, 2007. "A method for finding well-dispersed subsets of non-dominated vectors for multiple objective mixed integer linear programs," European Journal of Operational Research, Elsevier, vol. 180(3), pages 1011-1027, August.
    28. Wiedemann, Paul, 1978. "Planning with multiple objectives," Omega, Elsevier, vol. 6(5), pages 427-432.
    29. Khalili-Damghani, Kaveh & Abtahi, Amir-Reza & Tavana, Madjid, 2013. "A new multi-objective particle swarm optimization method for solving reliability redundancy allocation problems," Reliability Engineering and System Safety, Elsevier, vol. 111(C), pages 58-75.
    30. Mastorakis, Kostis & Siskos, Eleftherios, 2016. "Value focused pharmaceutical strategy determination with multicriteria decision analysis techniques," Omega, Elsevier, vol. 59(PA), pages 84-96.
    31. Panagiotis Xidonas & George Mavrotas & John Psarras, 2010. "Equity portfolio construction and selection using multiobjective mathematical programming," Journal of Global Optimization, Springer, vol. 47(2), pages 185-209, June.
    32. George Mavrotas & José Figueira & Alexandros Antoniadis, 2011. "Using the idea of expanded core for the exact solution of bi-objective multi-dimensional knapsack problems," Journal of Global Optimization, Springer, vol. 49(4), pages 589-606, April.
    33. Alves, Maria João & Costa, João Paulo, 2009. "An exact method for computing the nadir values in multiple objective linear programming," European Journal of Operational Research, Elsevier, vol. 198(2), pages 637-646, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cantu Rodriguez, Roman & Palacios-Garcia, Emilio J. & Deconinck, Geert, 2024. "Redesign for flexibility through electrification: Multi-objective optimization of the operation of a multi-energy industrial steam network," Applied Energy, Elsevier, vol. 362(C).
    2. Khaled Alshehri & Mohadese Basirati & Devin Sapsford & Michael Harbottle & Peter Cleall, 2024. "Nature-Based Secondary Resource Recovery under Climate Change Uncertainty: A Robust Multi-Objective Optimisation Methodology," Sustainability, MDPI, vol. 16(16), pages 1-27, August.
    3. Wang, Ziyao & Zhong, Lipeng & Pan, Zhenning & Yu, Tao & Qiu, Xingyu, 2022. "Optimal double Q AC-DC hybrid distribution system planning with explicit topology-variable-based reliability assessment," Applied Energy, Elsevier, vol. 322(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rong, Aiying & Figueira, José Rui, 2014. "Dynamic programming algorithms for the bi-objective integer knapsack problem," European Journal of Operational Research, Elsevier, vol. 236(1), pages 85-99.
    2. Mesquita-Cunha, Mariana & Figueira, José Rui & Barbosa-Póvoa, Ana Paula, 2023. "New ϵ−constraint methods for multi-objective integer linear programming: A Pareto front representation approach," European Journal of Operational Research, Elsevier, vol. 306(1), pages 286-307.
    3. Mavrotas, George & Florios, Kostas & Figueira, José Rui, 2015. "An improved version of a core based algorithm for the multi-objective multi-dimensional knapsack problem: A computational study and comparison with meta-heuristics," Applied Mathematics and Computation, Elsevier, vol. 270(C), pages 25-43.
    4. Mavrotas, George & Florios, Kostas, 2013. "An improved version of the augmented epsilon-constraint method (AUGMECON2) for finding the exact Pareto set in Multi-Objective Integer Programming problems," MPRA Paper 105034, University Library of Munich, Germany.
    5. Dinçer Konur & Hadi Farhangi & Cihan H. Dagli, 2016. "A multi-objective military system of systems architecting problem with inflexible and flexible systems: formulation and solution methods," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 38(4), pages 967-1006, October.
    6. Schmidt, Adam & Albert, Laura A. & Zheng, Kaiyue, 2021. "Risk management for cyber-infrastructure protection: A bi-objective integer programming approach," Reliability Engineering and System Safety, Elsevier, vol. 205(C).
    7. Holzmann, Tim & Smith, J.C., 2018. "Solving discrete multi-objective optimization problems using modified augmented weighted Tchebychev scalarizations," European Journal of Operational Research, Elsevier, vol. 271(2), pages 436-449.
    8. Finke, Jonas & Bertsch, Valentin, 2023. "Implementing a highly adaptable method for the multi-objective optimisation of energy systems," Applied Energy, Elsevier, vol. 332(C).
    9. Selim Mankai & Khaled Guesmi, 2014. "Robust Portfolio Protection: A Scenarios-Based Approach," Working Papers hal-04141326, HAL.
    10. Rong, Aiying & Figueira, José Rui, 2013. "A reduction dynamic programming algorithm for the bi-objective integer knapsack problem," European Journal of Operational Research, Elsevier, vol. 231(2), pages 299-313.
    11. Gabrel, Virginie & Murat, Cécile & Thiele, Aurélie, 2014. "Recent advances in robust optimization: An overview," European Journal of Operational Research, Elsevier, vol. 235(3), pages 471-483.
    12. Lakmali Weerasena & Aniekan Ebiefung & Anthony Skjellum, 2022. "Design of a heuristic algorithm for the generalized multi-objective set covering problem," Computational Optimization and Applications, Springer, vol. 82(3), pages 717-751, July.
    13. Mohammad S. Roni & Sandra D. Eksioglu & Kara G. Cafferty & Jacob J. Jacobson, 2017. "A multi-objective, hub-and-spoke model to design and manage biofuel supply chains," Annals of Operations Research, Springer, vol. 249(1), pages 351-380, February.
    14. Huan Xu & Constantine Caramanis & Shie Mannor, 2012. "Optimization Under Probabilistic Envelope Constraints," Operations Research, INFORMS, vol. 60(3), pages 682-699, June.
    15. Natashia Boland & Hadi Charkhgard & Martin Savelsbergh, 2015. "A Criterion Space Search Algorithm for Biobjective Integer Programming: The Balanced Box Method," INFORMS Journal on Computing, INFORMS, vol. 27(4), pages 735-754, November.
    16. Hêris Golpîra, 2017. "Robust bi-level optimization for an opportunistic supply chain network design problem in an uncertain and risky environment," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 27(1), pages 21-41.
    17. Bashir Bashir & Özlem Karsu, 2022. "Solution approaches for equitable multiobjective integer programming problems," Annals of Operations Research, Springer, vol. 311(2), pages 967-995, April.
    18. Murat Köksalan & Ceren Tuncer Şakar, 2016. "An interactive approach to stochastic programming-based portfolio optimization," Annals of Operations Research, Springer, vol. 245(1), pages 47-66, October.
    19. Jornada, Daniel & Leon, V. Jorge, 2016. "Biobjective robust optimization over the efficient set for Pareto set reduction," European Journal of Operational Research, Elsevier, vol. 252(2), pages 573-586.
    20. Andrew J. Keith & Darryl K. Ahner, 2021. "A survey of decision making and optimization under uncertainty," Annals of Operations Research, Springer, vol. 300(2), pages 319-353, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:operea:v:22:y:2022:i:2:d:10.1007_s12351-020-00574-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.