IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v111y2013icp58-75.html
   My bibliography  Save this article

A new multi-objective particle swarm optimization method for solving reliability redundancy allocation problems

Author

Listed:
  • Khalili-Damghani, Kaveh
  • Abtahi, Amir-Reza
  • Tavana, Madjid

Abstract

In this paper, a new dynamic self-adaptive multi-objective particle swarm optimization (DSAMOPSO) method is proposed to solve binary-state multi-objective reliability redundancy allocation problems (MORAPs). A combination of penalty function and modification strategies is used to handle the constraints in the MORAPs. A dynamic self-adaptive penalty function strategy is utilized to handle the constraints. A heuristic cost-benefit ratio is also supplied to modify the structure of violated swarms. An adaptive survey is conducted using several test problems to illustrate the performance of the proposed DSAMOPSO method. An efficient version of the epsilon-constraint (AUGMECON) method, a modified non-dominated sorting genetic algorithm (NSGA-II) method, and a customized time-variant multi-objective particle swarm optimization (cTV-MOPSO) method are used to generate non-dominated solutions for the test problems. Several properties of the DSAMOPSO method, such as fast-ranking, evolutionary-based operators, elitism, crowding distance, dynamic parameter tuning, and tournament global best selection, improved the best known solutions of the benchmark cases of the MORAP. Moreover, different accuracy and diversity metrics illustrated the relative preference of the DSAMOPSO method over the competing approaches in the literature.

Suggested Citation

  • Khalili-Damghani, Kaveh & Abtahi, Amir-Reza & Tavana, Madjid, 2013. "A new multi-objective particle swarm optimization method for solving reliability redundancy allocation problems," Reliability Engineering and System Safety, Elsevier, vol. 111(C), pages 58-75.
  • Handle: RePEc:eee:reensy:v:111:y:2013:i:c:p:58-75
    DOI: 10.1016/j.ress.2012.10.009
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832012002098
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2012.10.009?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhao, Jian-Hua & Liu, Zhaoheng & Dao, My-Thien, 2007. "Reliability optimization using multiobjective ant colony system approaches," Reliability Engineering and System Safety, Elsevier, vol. 92(1), pages 109-120.
    2. Konak, Abdullah & Coit, David W. & Smith, Alice E., 2006. "Multi-objective optimization using genetic algorithms: A tutorial," Reliability Engineering and System Safety, Elsevier, vol. 91(9), pages 992-1007.
    3. Gen, Mitsuo & Yun, YoungSu, 2006. "Soft computing approach for reliability optimization: State-of-the-art survey," Reliability Engineering and System Safety, Elsevier, vol. 91(9), pages 1008-1026.
    4. Liang, Yun-Chia & Chen, Yi-Ching, 2007. "Redundancy allocation of series-parallel systems using a variable neighborhood search algorithm," Reliability Engineering and System Safety, Elsevier, vol. 92(3), pages 323-331.
    5. Li, Zhaojun & Liao, Haitao & Coit, David W., 2009. "A two-stage approach for multi-objective decision making with applications to system reliability optimization," Reliability Engineering and System Safety, Elsevier, vol. 94(10), pages 1585-1592.
    6. Khalili-Damghani, Kaveh & Amiri, Maghsoud, 2012. "Solving binary-state multi-objective reliability redundancy allocation series-parallel problem using efficient epsilon-constraint, multi-start partial bound enumeration algorithm, and DEA," Reliability Engineering and System Safety, Elsevier, vol. 103(C), pages 35-44.
    7. Salazar, Daniel & Rocco, Claudio M. & Galván, Blas J., 2006. "Optimization of constrained multiple-objective reliability problems using evolutionary algorithms," Reliability Engineering and System Safety, Elsevier, vol. 91(9), pages 1057-1070.
    8. Taboada, Heidi A. & Baheranwala, Fatema & Coit, David W. & Wattanapongsakorn, Naruemon, 2007. "Practical solutions for multi-objective optimization: An application to system reliability design problems," Reliability Engineering and System Safety, Elsevier, vol. 92(3), pages 314-322.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Khalili-Damghani, Kaveh & Amiri, Maghsoud, 2012. "Solving binary-state multi-objective reliability redundancy allocation series-parallel problem using efficient epsilon-constraint, multi-start partial bound enumeration algorithm, and DEA," Reliability Engineering and System Safety, Elsevier, vol. 103(C), pages 35-44.
    2. Dolatshahi-Zand, Ali & Khalili-Damghani, Kaveh, 2015. "Design of SCADA water resource management control center by a bi-objective redundancy allocation problem and particle swarm optimization," Reliability Engineering and System Safety, Elsevier, vol. 133(C), pages 11-21.
    3. Safari, Jalal, 2012. "Multi-objective reliability optimization of series-parallel systems with a choice of redundancy strategies," Reliability Engineering and System Safety, Elsevier, vol. 108(C), pages 10-20.
    4. Zhang, Enze & Wu, Yifei & Chen, Qingwei, 2014. "A practical approach for solving multi-objective reliability redundancy allocation problems using extended bare-bones particle swarm optimization," Reliability Engineering and System Safety, Elsevier, vol. 127(C), pages 65-76.
    5. Juan Li & Bin Xin & Panos M. Pardalos & Jie Chen, 2021. "Solving bi-objective uncertain stochastic resource allocation problems by the CVaR-based risk measure and decomposition-based multi-objective evolutionary algorithms," Annals of Operations Research, Springer, vol. 296(1), pages 639-666, January.
    6. Hemant Kumar & Shiv Prasad Yadav, 2019. "Fuzzy rule-based reliability analysis using NSGA-II," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 10(5), pages 953-972, October.
    7. Andrés Cacereño & David Greiner & Blas J. Galván, 2021. "Multi-Objective Optimum Design and Maintenance of Safety Systems: An In-Depth Comparison Study Including Encoding and Scheduling Aspects with NSGA-II," Mathematics, MDPI, vol. 9(15), pages 1-39, July.
    8. Cao, Dingzhou & Murat, Alper & Chinnam, Ratna Babu, 2013. "Efficient exact optimization of multi-objective redundancy allocation problems in series-parallel systems," Reliability Engineering and System Safety, Elsevier, vol. 111(C), pages 154-163.
    9. Selçuklu, Saltuk Buğra & Coit, David W. & Felder, Frank A., 2020. "Pareto uncertainty index for evaluating and comparing solutions for stochastic multiple objective problems," European Journal of Operational Research, Elsevier, vol. 284(2), pages 644-659.
    10. Kong, Xiangyong & Gao, Liqun & Ouyang, Haibin & Li, Steven, 2015. "Solving the redundancy allocation problem with multiple strategy choices using a new simplified particle swarm optimization," Reliability Engineering and System Safety, Elsevier, vol. 144(C), pages 147-158.
    11. Meisam Sadeghi & Emad Roghanian & Hamid Shahriari & Hassan Sadeghi, 2021. "Reliability optimization for non-repairable series-parallel systems with a choice of redundancy strategies and heterogeneous components: Erlang time-to-failure distribution," Journal of Risk and Reliability, , vol. 235(3), pages 509-528, June.
    12. Abouei Ardakan, Mostafa & Rezvan, Mohammad Taghi, 2018. "Multi-objective optimization of reliability–redundancy allocation problem with cold-standby strategy using NSGA-II," Reliability Engineering and System Safety, Elsevier, vol. 172(C), pages 225-238.
    13. Ali Salmasnia & Sadegh Noori & Hadi Mokhtari, 2019. "A redundancy allocation problem by using utility function method and ant colony optimization: tradeoff between availability and total cost," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 10(3), pages 416-428, June.
    14. Fiondella, Lance & Lin, Yi-Kuei & Pham, Hoang & Chang, Ping-Chen & Li, Chendong, 2017. "A confidence-based approach to reliability design considering correlated failures," Reliability Engineering and System Safety, Elsevier, vol. 165(C), pages 102-114.
    15. Petchrompo, Sanyapong & Wannakrairot, Anupong & Parlikad, Ajith Kumar, 2022. "Pruning Pareto optimal solutions for multi-objective portfolio asset management," European Journal of Operational Research, Elsevier, vol. 297(1), pages 203-220.
    16. Shan, Songqing & Wang, G. Gary, 2008. "Reliable design space and complete single-loop reliability-based design optimization," Reliability Engineering and System Safety, Elsevier, vol. 93(8), pages 1218-1230.
    17. A. C. Torres-Echeverria & H. A. Thompson, 2007. "Multi-objective genetic algorithm for optimization of system safety and reliability based on IEC 61508 requirements: A practical approach," Journal of Risk and Reliability, , vol. 221(3), pages 193-205, September.
    18. Debasis Bhattacharya & Soma Roychowdhury, 2017. "A redundancy strategy for minimizing cost in systems with non-disjoint subsystems under reliability constraint," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 8(2), pages 645-655, November.
    19. Kayedpour, Farjam & Amiri, Maghsoud & Rafizadeh, Mahmoud & Shahryari Nia, Arash, 2017. "Multi-objective redundancy allocation problem for a system with repairable components considering instantaneous availability and strategy selection," Reliability Engineering and System Safety, Elsevier, vol. 160(C), pages 11-20.
    20. Attar, Ahmad & Raissi, Sadigh & Khalili-Damghani, Kaveh, 2017. "A simulation-based optimization approach for free distributed repairable multi-state availability-redundancy allocation problems," Reliability Engineering and System Safety, Elsevier, vol. 157(C), pages 177-191.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:111:y:2013:i:c:p:58-75. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.