IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i16p7220-d1461663.html
   My bibliography  Save this article

Nature-Based Secondary Resource Recovery under Climate Change Uncertainty: A Robust Multi-Objective Optimisation Methodology

Author

Listed:
  • Khaled Alshehri

    (School of Engineering, Cardiff University, Cardiff CF24 3AA, UK
    Department of Civil Engineering, College of Engineering, University of Bisha, P.O. Box 001, Bisha 61922, Saudi Arabia)

  • Mohadese Basirati

    (Mines Saint-Etienne, Université Clermont Auvergne, INP Clermont Auvergne, CNRS, UMR 6158 LIMOS, 42023 Saint-Etienne, France)

  • Devin Sapsford

    (School of Engineering, Cardiff University, Cardiff CF24 3AA, UK)

  • Michael Harbottle

    (School of Engineering, Cardiff University, Cardiff CF24 3AA, UK)

  • Peter Cleall

    (School of Engineering, Cardiff University, Cardiff CF24 3AA, UK)

Abstract

The management of high-volume (HV) waste poses a persistent challenge in sustainable materials management and represents an untapped opportunity in circular economy models. This study proposes a conceptual decision-making framework to operationalise a novel circular economy strategy for HV waste, involving temporary storage to facilitate nature-based secondary resource recovery. Using an illustrative case study of a candidate HV waste (legacy mining waste), we apply a robust multi-objective spatial optimisation approach at a national scale, employing an exact solution approach. Our methodology integrates mixed-integer linear programming to evaluate the economic viability, social benefits, and impacts of climate change uncertainties on nature-based solutions (NbS) implementation across diverse scenarios. The results demonstrate that NbS can enhance economic feasibility by incorporating carbon sequestration and employment benefits while demonstrating resilience against climate change projections to ensure long-term sustainability. The findings suggest that although NbS can improve the circular economy of HV nationally, it is essential to assess additional ecosystem services and address multiple uncertainties for effective macro-level sustainability assessment of HV management. This study offers a robust decision-making framework for policymakers and stakeholders to plan and implement nature-based circular economy strategies for HV waste streams at a national level while effectively managing long-term planning uncertainties.

Suggested Citation

  • Khaled Alshehri & Mohadese Basirati & Devin Sapsford & Michael Harbottle & Peter Cleall, 2024. "Nature-Based Secondary Resource Recovery under Climate Change Uncertainty: A Robust Multi-Objective Optimisation Methodology," Sustainability, MDPI, vol. 16(16), pages 1-27, August.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:16:p:7220-:d:1461663
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/16/7220/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/16/7220/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Alexandros Nikas & Angelos Fountoulakis & Aikaterini Forouli & Haris Doukas, 2022. "A robust augmented ε-constraint method (AUGMECON-R) for finding exact solutions of multi-objective linear programming problems," Operational Research, Springer, vol. 22(2), pages 1291-1332, April.
    2. Hilary Sigman, 2010. "Environmental Liability and Redevelopment of Old Industrial Land," Journal of Law and Economics, University of Chicago Press, vol. 53(2), pages 289-306, May.
    3. Tolga Genc, 2014. "Sensitivity analysis on PROMETHEE and TOPSIS weights," International Journal of Management and Decision Making, Inderscience Enterprises Ltd, vol. 13(4), pages 403-421.
    4. Simona Fortunati & Donato Morea & Enrico Maria Mosconi, 2020. "Circular economy and corporate social responsibility in the agricultural system: Cases study of the Italian agri-food industry," Agricultural Economics, Czech Academy of Agricultural Sciences, vol. 66(11), pages 489-498.
    5. Opricovic, Serafim & Tzeng, Gwo-Hshiung, 2004. "Compromise solution by MCDM methods: A comparative analysis of VIKOR and TOPSIS," European Journal of Operational Research, Elsevier, vol. 156(2), pages 445-455, July.
    6. Kirchherr, Julian & Reike, Denise & Hekkert, Marko, 2017. "Conceptualizing the circular economy: An analysis of 114 definitions," Resources, Conservation & Recycling, Elsevier, vol. 127(C), pages 221-232.
    7. Shanshan Feng & Jiake Shen & Shuo Sheng & Zengqing Hu & Yuncai Wang, 2023. "Spatial Prioritizing Brownfields Catering for Green Infrastructure by Integrating Urban Demands and Site Attributes in a Metropolitan Area," Land, MDPI, vol. 12(4), pages 1-29, April.
    8. Danielle Sinnett, 2019. "Going to waste? The potential impacts on nature conservation and cultural heritage from resource recovery on former mineral extraction sites in England and Wales," Journal of Environmental Planning and Management, Taylor & Francis Journals, vol. 62(7), pages 1227-1248, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aleksander Wasiuta, 2024. "Assessing Renewable Energy Development Potential in Polish Voivodeships: A Comparative Regional Analysis," Sustainability, MDPI, vol. 16(24), pages 1-22, December.
    2. Pina Puntillo, 2023. "Circular economy business models: Towards achieving sustainable development goals in the waste management sector—Empirical evidence and theoretical implications," Corporate Social Responsibility and Environmental Management, John Wiley & Sons, vol. 30(2), pages 941-954, March.
    3. Tina Wiegand & Martin Wynn, 2023. "Sustainability, the Circular Economy and Digitalisation in the German Textile and Clothing Industry," Sustainability, MDPI, vol. 15(11), pages 1-30, June.
    4. Yongming Song & Jun Hu, 2017. "Vector similarity measures of hesitant fuzzy linguistic term sets and their applications," PLOS ONE, Public Library of Science, vol. 12(12), pages 1-13, December.
    5. Yi Peng, 2015. "Regional earthquake vulnerability assessment using a combination of MCDM methods," Annals of Operations Research, Springer, vol. 234(1), pages 95-110, November.
    6. Hae-Yeol Kang & Seung Taek Chae & Eun-Sung Chung, 2023. "Quantifying Medium-Sized City Flood Vulnerability Due to Climate Change Using Multi-Criteria Decision-Making Techniques: Case of Republic of Korea," Sustainability, MDPI, vol. 15(22), pages 1-20, November.
    7. German Arana‐Landin & Waleska Sigüenza & Beñat Landeta‐Manzano & Iker Laskurain‐Iturbe, 2024. "Circular economy: On the road to ISO 59000 family of standards," Corporate Social Responsibility and Environmental Management, John Wiley & Sons, vol. 31(3), pages 1977-2009, May.
    8. Zheng, Guozhong & Wang, Xiao, 2020. "The comprehensive evaluation of renewable energy system schemes in tourist resorts based on VIKOR method," Energy, Elsevier, vol. 193(C).
    9. Abdulmajeed Almadhi & Abdelhakim Abdelhadi & Rakan Alyamani, 2023. "Moving from Linear to Circular Economy in Saudi Arabia: Life-Cycle Assessment on Plastic Waste Management," Sustainability, MDPI, vol. 15(13), pages 1-22, July.
    10. Hu, Xueyue & Wang, Chunying & Elshkaki, Ayman, 2024. "Material-energy Nexus: A systematic literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    11. Sergio Cappucci & Serena Nappi & Andrea Cappelli, 2022. "Green Public Areas and Urban Open Spaces Management: New GreenCAL Tool Algorithms and Circular Economy Implications," Land, MDPI, vol. 11(6), pages 1-25, June.
    12. Lin, Sheng-Hau & Zhao, Xiaofeng & Wu, Jiuxing & Liang, Fachao & Li, Jia-Hsuan & Lai, Ren-Ji & Hsieh, Jing-Chzi & Tzeng, Gwo-Hshiung, 2021. "An evaluation framework for developing green infrastructure by using a new hybrid multiple attribute decision-making model for promoting environmental sustainability," Socio-Economic Planning Sciences, Elsevier, vol. 75(C).
    13. Milad Zamanifar & Seyed Mohammad Seyedhoseyni, 2017. "Recovery planning model for roadways network after natural hazards," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 87(2), pages 699-716, June.
    14. Pedro Ponce & Citlaly Pérez & Aminah Robinson Fayek & Arturo Molina, 2022. "Solar Energy Implementation in Manufacturing Industry Using Multi-Criteria Decision-Making Fuzzy TOPSIS and S4 Framework," Energies, MDPI, vol. 15(23), pages 1-19, November.
    15. Mohit Jain & Gunjan Soni & Deepak Verma & Rajendra Baraiya & Bharti Ramtiyal, 2023. "Selection of Technology Acceptance Model for Adoption of Industry 4.0 Technologies in Agri-Fresh Supply Chain," Sustainability, MDPI, vol. 15(6), pages 1-20, March.
    16. Chen, Lisa Y. & Wang, Tien-Chin, 2009. "Optimizing partners' choice in IS/IT outsourcing projects: The strategic decision of fuzzy VIKOR," International Journal of Production Economics, Elsevier, vol. 120(1), pages 233-242, July.
    17. Monia Niero & Charlotte L. Jensen & Chiara Farné Fratini & Jens Dorland & Michael S. Jørgensen & Susse Georg, 2021. "Is life cycle assessment enough to address unintended side effects from Circular Economy initiatives?," Journal of Industrial Ecology, Yale University, vol. 25(5), pages 1111-1120, October.
    18. Wenyao Niu & Yuan Rong & Liying Yu & Lu Huang, 2022. "A Novel Hybrid Group Decision Making Approach Based on EDAS and Regret Theory under a Fermatean Cubic Fuzzy Environment," Mathematics, MDPI, vol. 10(17), pages 1-30, August.
    19. Jaroslaw Golebiewski & Josu Takala & Oskar Juszczyk & Nina Drejerska, 2019. "Local contribution to circular economy. A case study of a Polish rural municipality," Economia agro-alimentare, FrancoAngeli Editore, vol. 21(3), pages 771-791.
    20. Deb, Madhujit & Debbarma, Bishop & Majumder, Arindam & Banerjee, Rahul, 2016. "Performance –emission optimization of a diesel-hydrogen dual fuel operation: A NSGA II coupled TOPSIS MADM approach," Energy, Elsevier, vol. 117(P1), pages 281-290.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:16:p:7220-:d:1461663. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.