IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v270y2015icp25-43.html
   My bibliography  Save this article

An improved version of a core based algorithm for the multi-objective multi-dimensional knapsack problem: A computational study and comparison with meta-heuristics

Author

Listed:
  • Mavrotas, George
  • Florios, Kostas
  • Figueira, José Rui

Abstract

In this paper we propose an improved version of a core based algorithm for the multi-objective extension of one of the most well-known combinatorial optimization problems, the multi-dimensional knapsack problem. The original algorithm was designed only for bi-objective problems combining an extension of the core concept and a branch-and-bound algorithm. It is a deterministic algorithm and the core concept exploits the “divide and conquer” solution strategy which proves very effective in such problems. The new version is not limited to bi-objective problems; it can effectively handle problems with more than two objective functions and it has features that greatly accelerate the solution process. Namely, these features are the use of a heuristic based on the Dantzig bound in the fathoming process and the better housekeeping of the incumbent list through filtering of solutions. The key parameters of the new algorithm are (a) the size of the core and (b) the number of provided cores. Varying these parameters the user can easily tune the size of the obtained Pareto set. A comparison with evolutionary algorithms, like NSGA–II, SPEA2 and MOEA/D, has been made according to run time and the most widely used metrics (set coverage, set convergence etc). Our new version performs better than the most popular evolutionary algorithms and it is comparable to very recent state-of-the-art metaheuristics, like Multi-objective Memetic Algorithm based on Decomposition (MOMAD), for multi-objective programming.

Suggested Citation

  • Mavrotas, George & Florios, Kostas & Figueira, José Rui, 2015. "An improved version of a core based algorithm for the multi-objective multi-dimensional knapsack problem: A computational study and comparison with meta-heuristics," Applied Mathematics and Computation, Elsevier, vol. 270(C), pages 25-43.
  • Handle: RePEc:eee:apmaco:v:270:y:2015:i:c:p:25-43
    DOI: 10.1016/j.amc.2015.08.018
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300315010735
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2015.08.018?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Laumanns, Marco & Thiele, Lothar & Zitzler, Eckart, 2006. "An efficient, adaptive parameter variation scheme for metaheuristics based on the epsilon-constraint method," European Journal of Operational Research, Elsevier, vol. 169(3), pages 932-942, March.
    2. Pisinger, David, 1995. "An expanding-core algorithm for the exact 0-1 knapsack problem," European Journal of Operational Research, Elsevier, vol. 87(1), pages 175-187, November.
    3. Mavrotas, George & Figueira, José Rui & Florios, Kostas, 2009. "Solving the bi-objective multidimensional knapsack problem exploiting the concept of core," MPRA Paper 105087, University Library of Munich, Germany.
    4. George B. Dantzig, 1957. "Discrete-Variable Extremum Problems," Operations Research, INFORMS, vol. 5(2), pages 266-288, April.
    5. Jakob Puchinger & Günther R. Raidl & Ulrich Pferschy, 2010. "The Multidimensional Knapsack Problem: Structure and Algorithms," INFORMS Journal on Computing, INFORMS, vol. 22(2), pages 250-265, May.
    6. Rong, Aiying & Figueira, José Rui, 2013. "A reduction dynamic programming algorithm for the bi-objective integer knapsack problem," European Journal of Operational Research, Elsevier, vol. 231(2), pages 299-313.
    7. Shah, Ruchit & Reed, Patrick, 2011. "Comparative analysis of multiobjective evolutionary algorithms for random and correlated instances of multiobjective d-dimensional knapsack problems," European Journal of Operational Research, Elsevier, vol. 211(3), pages 466-479, June.
    8. Mavrotas, G. & Diakoulaki, D., 1998. "A branch and bound algorithm for mixed zero-one multiple objective linear programming," European Journal of Operational Research, Elsevier, vol. 107(3), pages 530-541, June.
    9. Egon Balas & Eitan Zemel, 1980. "An Algorithm for Large Zero-One Knapsack Problems," Operations Research, INFORMS, vol. 28(5), pages 1130-1154, October.
    10. David Pisinger, 1999. "Core Problems in Knapsack Algorithms," Operations Research, INFORMS, vol. 47(4), pages 570-575, August.
    11. Mavrotas, George & Florios, Kostas, 2013. "An improved version of the augmented epsilon-constraint method (AUGMECON2) for finding the exact Pareto set in Multi-Objective Integer Programming problems," MPRA Paper 105034, University Library of Munich, Germany.
    12. George Mavrotas & José Figueira & Alexandros Antoniadis, 2011. "Using the idea of expanded core for the exact solution of bi-objective multi-dimensional knapsack problems," Journal of Global Optimization, Springer, vol. 49(4), pages 589-606, April.
    13. Martello, Silvano & Pisinger, David & Toth, Paolo, 2000. "New trends in exact algorithms for the 0-1 knapsack problem," European Journal of Operational Research, Elsevier, vol. 123(2), pages 325-332, June.
    14. Glover, Fred, 2013. "Advanced greedy algorithms and surrogate constraint methods for linear and quadratic knapsack and covering problems," European Journal of Operational Research, Elsevier, vol. 230(2), pages 212-225.
    15. Florios, Kostas & Mavrotas, George & Diakoulaki, Danae, 2010. "Solving multiobjective, multiconstraint knapsack problems using mathematical programming and evolutionary algorithms," European Journal of Operational Research, Elsevier, vol. 203(1), pages 14-21, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hadi Jahangir & Mohammad Mohammadi & Seyed Hamid Reza Pasandideh & Neda Zendehdel Nobari, 2019. "Comparing performance of genetic and discrete invasive weed optimization algorithms for solving the inventory routing problem with an incremental delivery," Journal of Intelligent Manufacturing, Springer, vol. 30(6), pages 2327-2353, August.
    2. I. Kaliszewski & J. Miroforidis, 2021. "Cooperative multiobjective optimization with bounds on objective functions," Journal of Global Optimization, Springer, vol. 79(2), pages 369-385, February.
    3. I. Kaliszewski & J. Miroforidis, 2022. "Probing the Pareto front of a large-scale multiobjective problem with a MIP solver," Operational Research, Springer, vol. 22(5), pages 5617-5673, November.
    4. Hedieh Sajedi & Seyedeh Fatemeh Razavi, 2017. "DGSA: discrete gravitational search algorithm for solving knapsack problem," Operational Research, Springer, vol. 17(2), pages 563-591, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wishon, Christopher & Villalobos, J. Rene, 2016. "Robust efficiency measures for linear knapsack problem variants," European Journal of Operational Research, Elsevier, vol. 254(2), pages 398-409.
    2. Rong, Aiying & Figueira, José Rui, 2014. "Dynamic programming algorithms for the bi-objective integer knapsack problem," European Journal of Operational Research, Elsevier, vol. 236(1), pages 85-99.
    3. Mhand Hifi & Hedi Mhalla & Slim Sadfi, 2005. "Sensitivity of the Optimum to Perturbations of the Profit or Weight of an Item in the Binary Knapsack Problem," Journal of Combinatorial Optimization, Springer, vol. 10(3), pages 239-260, November.
    4. Alexandros Nikas & Angelos Fountoulakis & Aikaterini Forouli & Haris Doukas, 2022. "A robust augmented ε-constraint method (AUGMECON-R) for finding exact solutions of multi-objective linear programming problems," Operational Research, Springer, vol. 22(2), pages 1291-1332, April.
    5. Rong, Aiying & Figueira, José Rui, 2013. "A reduction dynamic programming algorithm for the bi-objective integer knapsack problem," European Journal of Operational Research, Elsevier, vol. 231(2), pages 299-313.
    6. Mavrotas, George & Figueira, José Rui & Florios, Kostas, 2009. "Solving the bi-objective multidimensional knapsack problem exploiting the concept of core," MPRA Paper 105087, University Library of Munich, Germany.
    7. Renata Mansini & M. Grazia Speranza, 2012. "CORAL: An Exact Algorithm for the Multidimensional Knapsack Problem," INFORMS Journal on Computing, INFORMS, vol. 24(3), pages 399-415, August.
    8. Barbati, Maria & Greco, Salvatore & Kadziński, Miłosz & Słowiński, Roman, 2018. "Optimization of multiple satisfaction levels in portfolio decision analysis," Omega, Elsevier, vol. 78(C), pages 192-204.
    9. Jakob Puchinger & Günther R. Raidl & Ulrich Pferschy, 2010. "The Multidimensional Knapsack Problem: Structure and Algorithms," INFORMS Journal on Computing, INFORMS, vol. 22(2), pages 250-265, May.
    10. Paola Cappanera & Marco Trubian, 2005. "A Local-Search-Based Heuristic for the Demand-Constrained Multidimensional Knapsack Problem," INFORMS Journal on Computing, INFORMS, vol. 17(1), pages 82-98, February.
    11. Toth, Paolo, 2000. "Optimization engineering techniques for the exact solution of NP-hard combinatorial optimization problems," European Journal of Operational Research, Elsevier, vol. 125(2), pages 222-238, September.
    12. Cacchiani, Valentina & D’Ambrosio, Claudia, 2017. "A branch-and-bound based heuristic algorithm for convex multi-objective MINLPs," European Journal of Operational Research, Elsevier, vol. 260(3), pages 920-933.
    13. Holzmann, Tim & Smith, J.C., 2018. "Solving discrete multi-objective optimization problems using modified augmented weighted Tchebychev scalarizations," European Journal of Operational Research, Elsevier, vol. 271(2), pages 436-449.
    14. Mavrotas, George & Florios, Kostas, 2013. "An improved version of the augmented epsilon-constraint method (AUGMECON2) for finding the exact Pareto set in Multi-Objective Integer Programming problems," MPRA Paper 105034, University Library of Munich, Germany.
    15. Cerqueus, Audrey & Przybylski, Anthony & Gandibleux, Xavier, 2015. "Surrogate upper bound sets for bi-objective bi-dimensional binary knapsack problems," European Journal of Operational Research, Elsevier, vol. 244(2), pages 417-433.
    16. Pisinger, David, 1995. "A minimal algorithm for the multiple-choice knapsack problem," European Journal of Operational Research, Elsevier, vol. 83(2), pages 394-410, June.
    17. Barbati, Maria & Corrente, Salvatore & Greco, Salvatore, 2020. "A general space-time model for combinatorial optimization problems (and not only)," Omega, Elsevier, vol. 96(C).
    18. Bashir Bashir & Özlem Karsu, 2022. "Solution approaches for equitable multiobjective integer programming problems," Annals of Operations Research, Springer, vol. 311(2), pages 967-995, April.
    19. Martello, Silvano & Pisinger, David & Toth, Paolo, 2000. "New trends in exact algorithms for the 0-1 knapsack problem," European Journal of Operational Research, Elsevier, vol. 123(2), pages 325-332, June.
    20. Tsionas, Mike G., 2019. "Multi-objective optimization using statistical models," European Journal of Operational Research, Elsevier, vol. 276(1), pages 364-378.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:270:y:2015:i:c:p:25-43. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.