IDEAS home Printed from https://ideas.repec.org/a/eee/transe/v123y2019icp90-120.html
   My bibliography  Save this article

Reliable single-allocation hub location problem with disruptions

Author

Listed:
  • Mohammadi, Mehrdad
  • Jula, Payman
  • Tavakkoli-Moghaddam, Reza

Abstract

Hub transportation networks are vulnerable to uncertainties such as natural disasters or terrorist attacks. We investigate the single-allocation p-hub location problems and the effect of uncertainties on deliveries. We introduce a bi-objective reliable capacitated p-hub location model considering hubs and links uncertainties to minimize both the total cost and the maximum transportation time. An efficient approximation approach is proposed to provide a lower bound for the optimal Pareto-frontier. We develop a new hybrid meta-heuristic algorithm to solve the model to near optimality. Our modelling and analysis of France transportation network shows that cost and delivery performance could be significantly improved.

Suggested Citation

  • Mohammadi, Mehrdad & Jula, Payman & Tavakkoli-Moghaddam, Reza, 2019. "Reliable single-allocation hub location problem with disruptions," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 123(C), pages 90-120.
  • Handle: RePEc:eee:transe:v:123:y:2019:i:c:p:90-120
    DOI: 10.1016/j.tre.2019.01.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1366554518309177
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tre.2019.01.008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. An, Yu & Zhang, Yu & Zeng, Bo, 2015. "The reliable hub-and-spoke design problem: Models and algorithms," Transportation Research Part B: Methodological, Elsevier, vol. 77(C), pages 103-122.
    2. Zhalechian, M. & Tavakkoli-Moghaddam, R. & Zahiri, B. & Mohammadi, M., 2016. "Sustainable design of a closed-loop location-routing-inventory supply chain network under mixed uncertainty," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 89(C), pages 182-214.
    3. Itf, 2015. "Big Data and Transport: Understanding and Assessing Options," International Transport Forum Policy Papers 8, OECD Publishing.
    4. Ivan Contreras & Jean-François Cordeau & Gilbert Laporte, 2012. "Exact Solution of Large-Scale Hub Location Problems with Multiple Capacity Levels," Transportation Science, INFORMS, vol. 46(4), pages 439-459, November.
    5. Tingting Cui & Yanfeng Ouyang & Zuo-Jun Max Shen, 2010. "Reliable Facility Location Design Under the Risk of Disruptions," Operations Research, INFORMS, vol. 58(4-part-1), pages 998-1011, August.
    6. Sumanjeet, 2015. "Institutions, Transparency, and Economic Growth," Emerging Economy Studies, International Management Institute, vol. 1(2), pages 188-210, November.
    7. F. Parvaresh & S. Hashemi Golpayegany & S. Moattar Husseini & B. Karimi, 2013. "Solving the p-hub Median Problem Under Intentional Disruptions Using Simulated Annealing," Networks and Spatial Economics, Springer, vol. 13(4), pages 445-470, December.
    8. Mohammadi, M. & Torabi, S.A. & Tavakkoli-Moghaddam, R., 2014. "Sustainable hub location under mixed uncertainty," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 62(C), pages 89-115.
    9. Zhalechian, M. & Torabi, S. Ali & Mohammadi, M., 2018. "Hub-and-spoke network design under operational and disruption risks," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 109(C), pages 20-43.
    10. Mavrotas, George & Florios, Kostas, 2013. "An improved version of the augmented epsilon-constraint method (AUGMECON2) for finding the exact Pareto set in Multi-Objective Integer Programming problems," MPRA Paper 105034, University Library of Munich, Germany.
    11. Mohammadi, Mehrdad & Jula, Payman & Tavakkoli-Moghaddam, Reza, 2017. "Design of a reliable multi-modal multi-commodity model for hazardous materials transportation under uncertainty," European Journal of Operational Research, Elsevier, vol. 257(3), pages 792-809.
    12. Medal, Hugh R. & Pohl, Edward A. & Rossetti, Manuel D., 2014. "A multi-objective integrated facility location-hardening model: Analyzing the pre- and post-disruption tradeoff," European Journal of Operational Research, Elsevier, vol. 237(1), pages 257-270.
    13. Martins de Sá, Elisangela & Contreras, Ivan & Cordeau, Jean-François, 2015. "Exact and heuristic algorithms for the design of hub networks with multiple lines," European Journal of Operational Research, Elsevier, vol. 246(1), pages 186-198.
    14. Wagner, Markus & Bringmann, Karl & Friedrich, Tobias & Neumann, Frank, 2015. "Efficient optimization of many objectives by approximation-guided evolution," European Journal of Operational Research, Elsevier, vol. 243(2), pages 465-479.
    15. Zahiri, B. & Tavakkoli-Moghaddam, R. & Mohammadi, M. & Jula, P., 2014. "Multi-objective design of an organ transplant network under uncertainty," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 72(C), pages 101-124.
    16. Meraklı, Merve & Yaman, Hande, 2016. "Robust intermodal hub location under polyhedral demand uncertainty," Transportation Research Part B: Methodological, Elsevier, vol. 86(C), pages 66-85.
    17. Jian Liu & Yinzhen Li & Jun Li, 2015. "Coopetition in Intermodal Freight Transport Services," Discrete Dynamics in Nature and Society, Hindawi, vol. 2015, pages 1-11, February.
    18. Samir Elhedhli & Huyu Wu, 2010. "A Lagrangean Heuristic for Hub-and-Spoke System Design with Capacity Selection and Congestion," INFORMS Journal on Computing, INFORMS, vol. 22(2), pages 282-296, May.
    19. Shanjiang Zhu & David M. Levinson, 2012. "Disruptions to Transportation Networks: A Review," Transportation Research, Economics and Policy, in: David M. Levinson & Henry X. Liu & Michael Bell (ed.), Network Reliability in Practice, edition 1, chapter 0, pages 5-20, Springer.
    20. Michael D. Peterson & Dimitris J. Bertsimas & Amedeo R. Odoni, 1995. "Models and Algorithms for Transient Queueing Congestion at Airports," Management Science, INFORMS, vol. 41(8), pages 1279-1295, August.
    21. Alumur, Sibel A. & Nickel, Stefan & Saldanha-da-Gama, Francisco, 2012. "Hub location under uncertainty," Transportation Research Part B: Methodological, Elsevier, vol. 46(4), pages 529-543.
    22. Niblett, Matthew R. & Church, Richard L., 2015. "The disruptive anti-covering location problem," European Journal of Operational Research, Elsevier, vol. 247(3), pages 764-773.
    23. Lawrence V. Snyder & Mark S. Daskin, 2005. "Reliability Models for Facility Location: The Expected Failure Cost Case," Transportation Science, INFORMS, vol. 39(3), pages 400-416, August.
    24. Feng, Yanling & Li, Guo & Sethi, Suresh P., 2018. "A three-layer chromosome genetic algorithm for multi-cell scheduling with flexible routes and machine sharing," International Journal of Production Economics, Elsevier, vol. 196(C), pages 269-283.
    25. Baykal-Gürsoy, M. & Xiao, W. & Ozbay, K., 2009. "Modeling traffic flow interrupted by incidents," European Journal of Operational Research, Elsevier, vol. 195(1), pages 127-138, May.
    26. Mahmutogullari, Ali Irfan & Kara, Bahar Y., 2016. "Hub location under competition," European Journal of Operational Research, Elsevier, vol. 250(1), pages 214-225.
    27. James F. Campbell & Morton E. O'Kelly, 2012. "Twenty-Five Years of Hub Location Research," Transportation Science, INFORMS, vol. 46(2), pages 153-169, May.
    28. Correia, Isabel & Nickel, Stefan & Saldanha-da-Gama, Francisco, 2010. "Single-assignment hub location problems with multiple capacity levels," Transportation Research Part B: Methodological, Elsevier, vol. 44(8-9), pages 1047-1066, September.
    29. Mohammadi, M. & Dehbari, S. & Vahdani, Behnam, 2014. "Design of a bi-objective reliable healthcare network with finite capacity queue under service covering uncertainty," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 72(C), pages 15-41.
    30. Contreras, Ivan & Cordeau, Jean-François & Laporte, Gilbert, 2011. "Stochastic uncapacitated hub location," European Journal of Operational Research, Elsevier, vol. 212(3), pages 518-528, August.
    31. Luangkesorn, K.L. & Klein, G. & Bidanda, B., 2016. "Analysis of production systems with potential for severe disruptions," International Journal of Production Economics, Elsevier, vol. 171(P4), pages 478-486.
    32. Vitayasak, Srisatja & Pongcharoen, Pupong & Hicks, Chris, 2017. "A tool for solving stochastic dynamic facility layout problems with stochastic demand using either a Genetic Algorithm or modified Backtracking Search Algorithm," International Journal of Production Economics, Elsevier, vol. 190(C), pages 146-157.
    33. Vahdani, Behnam & Mohammadi, M., 2015. "A bi-objective interval-stochastic robust optimization model for designing closed loop supply chain network with multi-priority queuing system," International Journal of Production Economics, Elsevier, vol. 170(PA), pages 67-87.
    34. Wei Guan & Xuedong Yan & Essam Radwan & Sze Chun Wong & Xiaoliang Ma, 2015. "Advanced Dynamic Simulations in Transportation," Discrete Dynamics in Nature and Society, Hindawi, vol. 2015, pages 1-2, August.
    35. Cui, Tingting & Ouyang, Yanfeng & Shen, Zuo-Jun Max J, 2010. "Reliable Facility Location Design under the Risk of Disruptions," University of California Transportation Center, Working Papers qt5sh2c7pw, University of California Transportation Center.
    36. Ray, Pritee & Jenamani, Mamata, 2016. "Mean-variance analysis of sourcing decision under disruption risk," European Journal of Operational Research, Elsevier, vol. 250(2), pages 679-689.
    37. Zuo-Jun Max Shen & Roger Lezhou Zhan & Jiawei Zhang, 2011. "The Reliable Facility Location Problem: Formulations, Heuristics, and Approximation Algorithms," INFORMS Journal on Computing, INFORMS, vol. 23(3), pages 470-482, August.
    38. Elisangela Martins de Sá & Ivan Contreras & Jean-François Cordeau & Ricardo Saraiva de Camargo & Gilberto de Miranda, 2015. "The Hub Line Location Problem," Transportation Science, INFORMS, vol. 49(3), pages 500-518, August.
    39. Zahiri, Behzad & Zhuang, Jun & Mohammadi, Mehrdad, 2017. "Toward an integrated sustainable-resilient supply chain: A pharmaceutical case study," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 103(C), pages 109-142.
    40. Malysh N.A., 2015. "Transport infrastructure as a factor of Tourism industry," Management, Academy of Municipal Administration, vol. 8(2), pages 24-31, April.
    41. Lo, Hong K. & Tung, Yeou-Koung, 2003. "Network with degradable links: capacity analysis and design," Transportation Research Part B: Methodological, Elsevier, vol. 37(4), pages 345-363, May.
    42. Yuan, Yun & Yu, Jie, 2018. "Locating transit hubs in a multi-modal transportation network: A cluster-based optimization approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 114(C), pages 85-103.
    43. Liu, Gang & Li, Yongshu & Guo, Jiawei & Li, Zheng, 2015. "Maximum transport capacity of a network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 432(C), pages 315-320.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mohammadi, Mehrdad & Jula, Payman & Tavakkoli-Moghaddam, Reza, 2017. "Design of a reliable multi-modal multi-commodity model for hazardous materials transportation under uncertainty," European Journal of Operational Research, Elsevier, vol. 257(3), pages 792-809.
    2. Zetina, Carlos Armando & Contreras, Ivan & Cordeau, Jean-François & Nikbakhsh, Ehsan, 2017. "Robust uncapacitated hub location," Transportation Research Part B: Methodological, Elsevier, vol. 106(C), pages 393-410.
    3. Alumur, Sibel A. & Campbell, James F. & Contreras, Ivan & Kara, Bahar Y. & Marianov, Vladimir & O’Kelly, Morton E., 2021. "Perspectives on modeling hub location problems," European Journal of Operational Research, Elsevier, vol. 291(1), pages 1-17.
    4. Ghaffarinasab, Nader & Kara, Bahar Y., 2022. "A conditional β-mean approach to risk-averse stochastic multiple allocation hub location problems," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 158(C).
    5. An, Yu & Zhang, Yu & Zeng, Bo, 2015. "The reliable hub-and-spoke design problem: Models and algorithms," Transportation Research Part B: Methodological, Elsevier, vol. 77(C), pages 103-122.
    6. Karimi-Mamaghan, Maryam & Mohammadi, Mehrdad & Jula, Payman & Pirayesh, Amir & Ahmadi, Hadi, 2020. "A learning-based metaheuristic for a multi-objective agile inspection planning model under uncertainty," European Journal of Operational Research, Elsevier, vol. 285(2), pages 513-537.
    7. Marufuzzaman, Mohammad & Eksioglu, Sandra D. & Li, Xiaopeng & Wang, Jin, 2014. "Analyzing the impact of intermodal-related risk to the design and management of biofuel supply chain," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 69(C), pages 122-145.
    8. Farid Momayezi & S. Kamal Chaharsooghi & Mohammad Mehdi Sepehri & Ali Husseinzadeh Kashan, 2021. "The capacitated modular single-allocation hub location problem with possibilities of hubs disruptions: modeling and a solution algorithm," Operational Research, Springer, vol. 21(1), pages 139-166, March.
    9. Esmizadeh, Yalda & Bashiri, Mahdi & Jahani, Hamed & Almada-Lobo, Bernardo, 2021. "Cold chain management in hierarchical operational hub networks," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 147(C).
    10. Azizi, Nader & Salhi, Said, 2022. "Reliable hub-and-spoke systems with multiple capacity levels and flow dependent discount factor," European Journal of Operational Research, Elsevier, vol. 298(3), pages 834-854.
    11. Cheng, Chun & Qi, Mingyao & Zhang, Ying & Rousseau, Louis-Martin, 2018. "A two-stage robust approach for the reliable logistics network design problem," Transportation Research Part B: Methodological, Elsevier, vol. 111(C), pages 185-202.
    12. Víctor Blanco & Elena Fernández & Yolanda Hinojosa, 2023. "Hub Location with Protection Under Interhub Link Failures," INFORMS Journal on Computing, INFORMS, vol. 35(5), pages 966-985, September.
    13. Karimi-Mamaghan, Maryam & Mohammadi, Mehrdad & Pirayesh, Amir & Karimi-Mamaghan, Amir Mohammad & Irani, Hassan, 2020. "Hub-and-spoke network design under congestion: A learning based metaheuristic," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 142(C).
    14. Domínguez-Bravo, Carmen-Ana & Fernández, Elena & Lüer-Villagra, Armin, 2024. "Hub location with congestion and time-sensitive demand," European Journal of Operational Research, Elsevier, vol. 316(3), pages 828-844.
    15. Sushil Poudel & Mohammad Marufuzzaman & Md Abdul Quddus & Sudipta Chowdhury & Linkan Bian & Brian Smith, 2018. "Designing a Reliable and Congested Multi-Modal Facility Location Problem for Biofuel Supply Chain Network," Energies, MDPI, vol. 11(7), pages 1-24, June.
    16. Fahimnia, Behnam & Jabbarzadeh, Armin & Sarkis, Joseph, 2018. "Greening versus resilience: A supply chain design perspective," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 119(C), pages 129-148.
    17. Ghaffarinasab, Nader & Motallebzadeh, Alireza, 2018. "Hub interdiction problem variants: Models and metaheuristic solution algorithms," European Journal of Operational Research, Elsevier, vol. 267(2), pages 496-512.
    18. Firoozeh Kaveh & Reza Tavakkoli-Moghaddam & Chefi Triki & Yaser Rahimi & Amin Jamili, 2021. "A new bi-objective model of the urban public transportation hub network design under uncertainty," Annals of Operations Research, Springer, vol. 296(1), pages 131-162, January.
    19. Salimi, F. & Vahdani, Behnam, 2018. "Designing a bio-fuel network considering links reliability and risk-pooling effect in bio-refineries," Reliability Engineering and System Safety, Elsevier, vol. 174(C), pages 96-107.
    20. Nader Azizi, 2019. "Managing facility disruption in hub-and-spoke networks: formulations and efficient solution methods," Annals of Operations Research, Springer, vol. 272(1), pages 159-185, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transe:v:123:y:2019:i:c:p:90-120. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600244/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.