IDEAS home Printed from https://ideas.repec.org/a/spr/coopap/v82y2022i3d10.1007_s10589-022-00379-7.html
   My bibliography  Save this article

Design of a heuristic algorithm for the generalized multi-objective set covering problem

Author

Listed:
  • Lakmali Weerasena

    (University of Tennessee at Chattanooga)

  • Aniekan Ebiefung

    (University of Tennessee at Chattanooga)

  • Anthony Skjellum

    (University of Tennessee at Chattanooga)

Abstract

Set covering optimization problems (SCPs) are important and of broad interest because of their extensive applications in the real world. This study addresses the generalized multi-objective SCP (GMOSCP), which is an augmentation of the well-known multi-objective SCP problem. A mathematically driven heuristic algorithm, which uses a branching approach of the feasible region to approximate the Pareto set of the GMOSCP, is proposed. The algorithm consists of a number of components including an initial stage, a constructive stage, and an improvement stage. Each of these stages contributes significantly to the performance of the algorithm. In the initial stage, we use an achievement scalarization approach to scalarize the objective vector of the GMOSCP, which uses a reference point and a combination of weighted $$l_1$$ l 1 and $$l_\infty$$ l ∞ norms of the objective function vector. Uniformly distributed weight vectors, defined with respect to this reference point, support the constructive stage to produce more widely and uniformly distributed Pareto set approximations. The constructive stage identifies feasible solutions to the problem based on a lexicographic set of selection rules. The improvement stage reduces the total cost of selected feasible solutions, which benefits the convergence of the approximations. We propose multiple cost-efficient rules in the constructive stage and investigate how they affect approximating the Pareto set. We used a diverse set of GMOSCP instances with different parameter settings for the computational experiments.

Suggested Citation

  • Lakmali Weerasena & Aniekan Ebiefung & Anthony Skjellum, 2022. "Design of a heuristic algorithm for the generalized multi-objective set covering problem," Computational Optimization and Applications, Springer, vol. 82(3), pages 717-751, July.
  • Handle: RePEc:spr:coopap:v:82:y:2022:i:3:d:10.1007_s10589-022-00379-7
    DOI: 10.1007/s10589-022-00379-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10589-022-00379-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10589-022-00379-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Florios, Kostas & Mavrotas, George, 2014. "Generation of the exact Pareto set in multi-objective traveling salesman and set covering problems," MPRA Paper 105074, University Library of Munich, Germany.
    2. Francis J. Vasko, 1984. "An efficient heuristic for large set covering problems," Naval Research Logistics Quarterly, John Wiley & Sons, vol. 31(1), pages 163-171, March.
    3. Lan, Guanghui & DePuy, Gail W. & Whitehouse, Gary E., 2007. "An effective and simple heuristic for the set covering problem," European Journal of Operational Research, Elsevier, vol. 176(3), pages 1387-1403, February.
    4. Mark S. Daskin & Edmund H. Stern, 1981. "A Hierarchical Objective Set Covering Model for Emergency Medical Service Vehicle Deployment," Transportation Science, INFORMS, vol. 15(2), pages 137-152, May.
    5. Soylu, Banu, 2015. "Heuristic approaches for biobjective mixed 0–1 integer linear programming problems," European Journal of Operational Research, Elsevier, vol. 245(3), pages 690-703.
    6. Mavrotas, George & Florios, Kostas, 2013. "An improved version of the augmented epsilon-constraint method (AUGMECON2) for finding the exact Pareto set in Multi-Objective Integer Programming problems," MPRA Paper 105034, University Library of Munich, Germany.
    7. Zhang, Weihua & Reimann, Marc, 2014. "A simple augmented ∊-constraint method for multi-objective mathematical integer programming problems," European Journal of Operational Research, Elsevier, vol. 234(1), pages 15-24.
    8. Christian Prins & Caroline Prodhon & Roberto Calvo, 2006. "Two-phase method and Lagrangian relaxation to solve the Bi-Objective Set Covering Problem," Annals of Operations Research, Springer, vol. 147(1), pages 23-41, October.
    9. Lakmali Weerasena & Margaret M. Wiecek & Banu Soylu, 2017. "An algorithm for approximating the Pareto set of the multiobjective set covering problem," Annals of Operations Research, Springer, vol. 248(1), pages 493-514, January.
    10. Garcia-Martinez, C. & Cordon, O. & Herrera, F., 2007. "A taxonomy and an empirical analysis of multiple objective ant colony optimization algorithms for the bi-criteria TSP," European Journal of Operational Research, Elsevier, vol. 180(1), pages 116-148, July.
    11. Figueira, J.R. & Liefooghe, A. & Talbi, E.-G. & Wierzbicki, A.P., 2010. "A parallel multiple reference point approach for multi-objective optimization," European Journal of Operational Research, Elsevier, vol. 205(2), pages 390-400, September.
    12. Damitha Bandara & Maria E. Mayorga & Laura A. McLay, 2012. "Optimal dispatching strategies for emergency vehicles to increase patient survivability," International Journal of Operational Research, Inderscience Enterprises Ltd, vol. 15(2), pages 195-214.
    13. Christos Voudouris & Edward P.K. Tsang & Abdullah Alsheddy, 2010. "Guided Local Search," International Series in Operations Research & Management Science, in: Michel Gendreau & Jean-Yves Potvin (ed.), Handbook of Metaheuristics, chapter 0, pages 321-361, Springer.
    14. V. Chvatal, 1979. "A Greedy Heuristic for the Set-Covering Problem," Mathematics of Operations Research, INFORMS, vol. 4(3), pages 233-235, August.
    15. Andrzej Jaszkiewicz, 2004. "A Comparative Study of Multiple-Objective Metaheuristics on the Bi-Objective Set Covering Problem and the Pareto Memetic Algorithm," Annals of Operations Research, Springer, vol. 131(1), pages 135-158, October.
    16. Jaszkiewicz, Andrzej, 2002. "Genetic local search for multi-objective combinatorial optimization," European Journal of Operational Research, Elsevier, vol. 137(1), pages 50-71, February.
    17. Niklas Kohl & Stefan Karisch, 2004. "Airline Crew Rostering: Problem Types, Modeling, and Optimization," Annals of Operations Research, Springer, vol. 127(1), pages 223-257, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Florios, Kostas & Mavrotas, George, 2014. "Generation of the exact Pareto set in multi-objective traveling salesman and set covering problems," MPRA Paper 105074, University Library of Munich, Germany.
    2. Lakmali Weerasena & Margaret M. Wiecek & Banu Soylu, 2017. "An algorithm for approximating the Pareto set of the multiobjective set covering problem," Annals of Operations Research, Springer, vol. 248(1), pages 493-514, January.
    3. Lakmali Weerasena, 2022. "Advancing local search approximations for multiobjective combinatorial optimization problems," Journal of Combinatorial Optimization, Springer, vol. 43(3), pages 589-612, April.
    4. Justus Bonz, 2021. "Application of a multi-objective multi traveling salesperson problem with time windows," Public Transport, Springer, vol. 13(1), pages 35-57, March.
    5. Alexandros Nikas & Angelos Fountoulakis & Aikaterini Forouli & Haris Doukas, 2022. "A robust augmented ε-constraint method (AUGMECON-R) for finding exact solutions of multi-objective linear programming problems," Operational Research, Springer, vol. 22(2), pages 1291-1332, April.
    6. Larry W. Jacobs & Michael J. Brusco, 1995. "Note: A local‐search heuristic for large set‐covering problems," Naval Research Logistics (NRL), John Wiley & Sons, vol. 42(7), pages 1129-1140, October.
    7. Satya Tamby & Daniel Vanderpooten, 2021. "Enumeration of the Nondominated Set of Multiobjective Discrete Optimization Problems," INFORMS Journal on Computing, INFORMS, vol. 33(1), pages 72-85, January.
    8. Masoud Yaghini & Mohammad Karimi & Mohadeseh Rahbar, 2015. "A set covering approach for multi-depot train driver scheduling," Journal of Combinatorial Optimization, Springer, vol. 29(3), pages 636-654, April.
    9. Schmidt, Adam & Albert, Laura A. & Zheng, Kaiyue, 2021. "Risk management for cyber-infrastructure protection: A bi-objective integer programming approach," Reliability Engineering and System Safety, Elsevier, vol. 205(C).
    10. Wang, Yiyuan & Pan, Shiwei & Al-Shihabi, Sameh & Zhou, Junping & Yang, Nan & Yin, Minghao, 2021. "An improved configuration checking-based algorithm for the unicost set covering problem," European Journal of Operational Research, Elsevier, vol. 294(2), pages 476-491.
    11. Abdullah Alshehri & Mahmoud Owais & Jayadev Gyani & Mishal H. Aljarbou & Saleh Alsulamy, 2023. "Residual Neural Networks for Origin–Destination Trip Matrix Estimation from Traffic Sensor Information," Sustainability, MDPI, vol. 15(13), pages 1-21, June.
    12. Victor Reyes & Ignacio Araya, 2021. "A GRASP-based scheme for the set covering problem," Operational Research, Springer, vol. 21(4), pages 2391-2408, December.
    13. Owais, Mahmoud & Moussa, Ghada S. & Hussain, Khaled F., 2019. "Sensor location model for O/D estimation: Multi-criteria meta-heuristics approach," Operations Research Perspectives, Elsevier, vol. 6(C).
    14. Di Martinelly, Christine & Meskens, Nadine, 2017. "A bi-objective integrated approach to building surgical teams and nurse schedule rosters to maximise surgical team affinities and minimise nurses' idle time," International Journal of Production Economics, Elsevier, vol. 191(C), pages 323-334.
    15. Holzmann, Tim & Smith, J.C., 2018. "Solving discrete multi-objective optimization problems using modified augmented weighted Tchebychev scalarizations," European Journal of Operational Research, Elsevier, vol. 271(2), pages 436-449.
    16. Bélanger, V. & Lanzarone, E. & Nicoletta, V. & Ruiz, A. & Soriano, P., 2020. "A recursive simulation-optimization framework for the ambulance location and dispatching problem," European Journal of Operational Research, Elsevier, vol. 286(2), pages 713-725.
    17. Bélanger, V. & Ruiz, A. & Soriano, P., 2019. "Recent optimization models and trends in location, relocation, and dispatching of emergency medical vehicles," European Journal of Operational Research, Elsevier, vol. 272(1), pages 1-23.
    18. Rong, Aiying & Figueira, José Rui, 2014. "Dynamic programming algorithms for the bi-objective integer knapsack problem," European Journal of Operational Research, Elsevier, vol. 236(1), pages 85-99.
    19. Zahiri, Behzad & Zhuang, Jun & Mohammadi, Mehrdad, 2017. "Toward an integrated sustainable-resilient supply chain: A pharmaceutical case study," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 103(C), pages 109-142.
    20. Bashir Bashir & Özlem Karsu, 2022. "Solution approaches for equitable multiobjective integer programming problems," Annals of Operations Research, Springer, vol. 311(2), pages 967-995, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:coopap:v:82:y:2022:i:3:d:10.1007_s10589-022-00379-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.