IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v211y2011i3p466-479.html
   My bibliography  Save this article

Comparative analysis of multiobjective evolutionary algorithms for random and correlated instances of multiobjective d-dimensional knapsack problems

Author

Listed:
  • Shah, Ruchit
  • Reed, Patrick

Abstract

This study analyzes multiobjective d-dimensional knapsack problems (MOd-KP) within a comparative analysis of three multiobjective evolutionary algorithms (MOEAs): the [epsilon]-nondominated sorted genetic algorithm II ([epsilon]-NSGAII), the strength Pareto evolutionary algorithm 2 (SPEA2) and the [epsilon]-nondominated hierarchical Bayesian optimization algorithm ([epsilon]-hBOA). This study contributes new insights into the challenges posed by correlated instances of the MOd-KP that better capture the decision interdependencies often present in real world applications. A statistical performance analysis of the algorithms uses the unary [epsilon]-indicator, the hypervolume indicator and success rate plots to demonstrate their relative effectiveness, efficiency, and reliability for the MOd-KP instances analyzed. Our results indicate that the [epsilon]-hBOA achieves superior performance relative to [epsilon]-NSGAII and SPEA2 with increasing number of objectives, number of decisions, and correlative linkages between the two. Performance of the [epsilon]-hBOA suggests that probabilistic model building evolutionary algorithms have significant promise for expanding the size and scope of challenging multiobjective problems that can be explored.

Suggested Citation

  • Shah, Ruchit & Reed, Patrick, 2011. "Comparative analysis of multiobjective evolutionary algorithms for random and correlated instances of multiobjective d-dimensional knapsack problems," European Journal of Operational Research, Elsevier, vol. 211(3), pages 466-479, June.
  • Handle: RePEc:eee:ejores:v:211:y:2011:i:3:p:466-479
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377-2217(11)00084-1
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. George B. Dantzig, 1957. "Discrete-Variable Extremum Problems," Operations Research, INFORMS, vol. 5(2), pages 266-288, April.
    2. Bazgan, Cristina & Hugot, Hadrien & Vanderpooten, Daniel, 2009. "Implementing an efficient fptas for the 0-1 multi-objective knapsack problem," European Journal of Operational Research, Elsevier, vol. 198(1), pages 47-56, October.
    3. Matthias Ehrgott & Xavier Gandibleux, 2004. "Approximative solution methods for multiobjective combinatorial optimization," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 12(1), pages 1-63, June.
    4. Martello, Silvano & Pisinger, David & Toth, Paolo, 2000. "New trends in exact algorithms for the 0-1 knapsack problem," European Journal of Operational Research, Elsevier, vol. 123(2), pages 325-332, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mavrotas, George & Florios, Kostas & Figueira, José Rui, 2015. "An improved version of a core based algorithm for the multi-objective multi-dimensional knapsack problem: A computational study and comparison with meta-heuristics," Applied Mathematics and Computation, Elsevier, vol. 270(C), pages 25-43.
    2. Madjid Tavana & Kaveh Khalili-Damghani & Amir-Reza Abtahi, 2013. "A fuzzy multidimensional multiple-choice knapsack model for project portfolio selection using an evolutionary algorithm," Annals of Operations Research, Springer, vol. 206(1), pages 449-483, July.
    3. Marcella S. R. Martins & Myriam R. B. S. Delgado & Ricardo Lüders & Roberto Santana & Richard A. Gonçalves & Carolina P. Almeida, 2018. "Hybrid multi-objective Bayesian estimation of distribution algorithm: a comparative analysis for the multi-objective knapsack problem," Journal of Heuristics, Springer, vol. 24(1), pages 25-47, February.
    4. Marcella S. R. Martins & Mohamed El Yafrani & Myriam Delgado & Ricardo Lüders & Roberto Santana & Hugo V. Siqueira & Huseyin G. Akcay & Belaïd Ahiod, 2021. "Analysis of Bayesian Network Learning Techniques for a Hybrid Multi-objective Bayesian Estimation of Distribution Algorithm: a case study on MNK Landscape," Journal of Heuristics, Springer, vol. 27(4), pages 549-573, August.
    5. Alexandros Nikas & Angelos Fountoulakis & Aikaterini Forouli & Haris Doukas, 2022. "A robust augmented ε-constraint method (AUGMECON-R) for finding exact solutions of multi-objective linear programming problems," Operational Research, Springer, vol. 22(2), pages 1291-1332, April.
    6. Probst, Malte & Rothlauf, Franz & Grahl, Jörn, 2017. "Scalability of using Restricted Boltzmann Machines for combinatorial optimization," European Journal of Operational Research, Elsevier, vol. 256(2), pages 368-383.
    7. Mavrotas, George & Florios, Kostas, 2013. "An improved version of the augmented epsilon-constraint method (AUGMECON2) for finding the exact Pareto set in Multi-Objective Integer Programming problems," MPRA Paper 105034, University Library of Munich, Germany.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sbihi, Abdelkader, 2010. "A cooperative local search-based algorithm for the Multiple-Scenario Max-Min Knapsack Problem," European Journal of Operational Research, Elsevier, vol. 202(2), pages 339-346, April.
    2. Joonyup Eun & Chang Sup Sung & Eun-Seok Kim, 2017. "Maximizing total job value on a single machine with job selection," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 68(9), pages 998-1005, September.
    3. Wishon, Christopher & Villalobos, J. Rene, 2016. "Robust efficiency measures for linear knapsack problem variants," European Journal of Operational Research, Elsevier, vol. 254(2), pages 398-409.
    4. Mavrotas, George & Florios, Kostas & Figueira, José Rui, 2015. "An improved version of a core based algorithm for the multi-objective multi-dimensional knapsack problem: A computational study and comparison with meta-heuristics," Applied Mathematics and Computation, Elsevier, vol. 270(C), pages 25-43.
    5. Mhand Hifi & Hedi Mhalla & Slim Sadfi, 2005. "Sensitivity of the Optimum to Perturbations of the Profit or Weight of an Item in the Binary Knapsack Problem," Journal of Combinatorial Optimization, Springer, vol. 10(3), pages 239-260, November.
    6. Paola Cappanera & Marco Trubian, 2005. "A Local-Search-Based Heuristic for the Demand-Constrained Multidimensional Knapsack Problem," INFORMS Journal on Computing, INFORMS, vol. 17(1), pages 82-98, February.
    7. Toth, Paolo, 2000. "Optimization engineering techniques for the exact solution of NP-hard combinatorial optimization problems," European Journal of Operational Research, Elsevier, vol. 125(2), pages 222-238, September.
    8. Peter Lindberg, 2010. "Optimal partial hedging in a discrete-time market as a knapsack problem," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 72(3), pages 433-451, December.
    9. Martello, Silvano & Pisinger, David & Toth, Paolo, 2000. "New trends in exact algorithms for the 0-1 knapsack problem," European Journal of Operational Research, Elsevier, vol. 123(2), pages 325-332, June.
    10. B. Golany & N. Goldberg & U. Rothblum, 2015. "Allocating multiple defensive resources in a zero-sum game setting," Annals of Operations Research, Springer, vol. 225(1), pages 91-109, February.
    11. T. Gómez & M. Hernández & J. Molina & M. León & E. Aldana & R. Caballero, 2011. "A multiobjective model for forest planning with adjacency constraints," Annals of Operations Research, Springer, vol. 190(1), pages 75-92, October.
    12. Teresa Estañ & Natividad Llorca & Ricardo Martínez & Joaquín Sánchez-Soriano, 2020. "On the difficulty of budget allocation in claims problems with indivisible items of different prices," ThE Papers 20/09, Department of Economic Theory and Economic History of the University of Granada..
    13. Teresa Estañ & Natividad Llorca & Ricardo Martínez & Joaquín Sánchez-Soriano, 2021. "On the Difficulty of Budget Allocation in Claims Problems with Indivisible Items and Prices," Group Decision and Negotiation, Springer, vol. 30(5), pages 1133-1159, October.
    14. Tobias Kuhn & Stefan Ruzika, 2017. "A coverage-based Box-Algorithm to compute a representation for optimization problems with three objective functions," Journal of Global Optimization, Springer, vol. 67(3), pages 581-600, March.
    15. Genserik L. L. Reniers & Kenneth Sörensen, 2013. "An Approach for Optimal Allocation of Safety Resources: Using the Knapsack Problem to Take Aggregated Cost‐Efficient Preventive Measures," Risk Analysis, John Wiley & Sons, vol. 33(11), pages 2056-2067, November.
    16. Büther, Marcel & Briskorn, Dirk, 2007. "Reducing the 0-1 knapsack problem with a single continuous variable to the standard 0-1 knapsack problem," Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel 629, Christian-Albrechts-Universität zu Kiel, Institut für Betriebswirtschaftslehre.
    17. Yanhong Feng & Xu Yu & Gai-Ge Wang, 2019. "A Novel Monarch Butterfly Optimization with Global Position Updating Operator for Large-Scale 0-1 Knapsack Problems," Mathematics, MDPI, vol. 7(11), pages 1-31, November.
    18. Altay, Nezih & Robinson Jr., Powell E. & Bretthauer, Kurt M., 2008. "Exact and heuristic solution approaches for the mixed integer setup knapsack problem," European Journal of Operational Research, Elsevier, vol. 190(3), pages 598-609, November.
    19. Delorme, Xavier & Gandibleux, Xavier & Degoutin, Fabien, 2010. "Evolutionary, constructive and hybrid procedures for the bi-objective set packing problem," European Journal of Operational Research, Elsevier, vol. 204(2), pages 206-217, July.
    20. Bian, Zheyong & Bai, Yun & Douglas, W. Scott & Maher, Ali & Liu, Xiang, 2022. "Multi-year planning for optimal navigation channel dredging and dredged material management," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 159(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:211:y:2011:i:3:p:466-479. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.