IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v61y2012i1p127-141.html
   My bibliography  Save this article

Application and validation of bivariate GIS-based landslide susceptibility assessment for the Vitravo river catchment (Calabria, south Italy)

Author

Listed:
  • Massimo Conforti
  • Gaetano Robustelli
  • Francesco Muto
  • Salvatore Critelli

Abstract

The Calabria (Southern Italy) region is characterized by many geological hazards among which landslides, due to the geological, geomorphological, and climatic characteristics, constitute one of the major cause of significant and widespread damage. The present work aims to exploit a bivariate statistics-based approach for drafting a landslide susceptibility map in a specific scenario of the region (the Vitravo River catchment) to provide a useful and easy tool for future land planning. Landslides have been detected through air-photo interpretation and field surveys, by identifying both the landslide detachment zones (LDZ) and landslide bodies; a geospatial database of predisposing factors has been constructed using the ESRI ArcView 3.2 GIS. The landslide susceptibility has been assessed by computing the weighting values (Wi) for each class of the predisposing factors (lithology, proximity to fault and drainage line, land use, slope angle, aspect, plan curvature), thus evaluating the distribution of the landslide detachment zones within each class. The extracted predisposing factors maps have then been re-classified on the basis of the calculated weighting values (Wi) and by means of overlay processes. Finally, the landslide susceptibility map has been considered by five classes. It has been determined that a high percentage (61%) of the study area is characterized by a high to very high degree of susceptibility; clay and marly lithologies, and slope exceeding 20° in inclination would be much prone to landsliding. Furthermore, in order to ascertain the proposed landslide susceptibility estimate, a validation procedure has been carried out, by splitting the landslide detachment zones into two groups: a training and a validation set. By means of the training set, the susceptibility map has first been produced; then, it has been compared with the validation set. As a result, a great majority of LDZ-validation set (85%) would be located in highly and very highly susceptible areas. The predictive power of the model is considered reliable, since more than 50% of the LDZ fall into 20% of the most susceptible areas. The reliability of the susceptibility map is also suggested by computing the SCAI index, true positive and false positive rates; nevertheless, the most susceptible areas are overestimated. As a whole, the results indicate that landslide susceptibility assessment based on a bivariate statistics-based method in a GIS environment may be useful for land planning policy, especially when considering its cost/benefit ratio and the need of using an easy tool. Copyright Springer Science+Business Media B.V. 2012

Suggested Citation

  • Massimo Conforti & Gaetano Robustelli & Francesco Muto & Salvatore Critelli, 2012. "Application and validation of bivariate GIS-based landslide susceptibility assessment for the Vitravo river catchment (Calabria, south Italy)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 61(1), pages 127-141, March.
  • Handle: RePEc:spr:nathaz:v:61:y:2012:i:1:p:127-141
    DOI: 10.1007/s11069-011-9781-0
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11069-011-9781-0
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11069-011-9781-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Juan Remondo & Alberto González & José De Terán & Antonio Cendrero & Andrea Fabbri & Chang-Jo Chung, 2003. "Validation of Landslide Susceptibility Maps; Examples and Applications from a Case Study in Northern Spain," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 30(3), pages 437-449, November.
    2. C. van Westen & N. Rengers & R. Soeters, 2003. "Use of Geomorphological Information in Indirect Landslide Susceptibility Assessment," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 30(3), pages 399-419, November.
    3. L.P.H. Van Beek & Th.W.J Van Asch, 2004. "Regional Assessment of the Effects of Land-Use Change on Landslide Hazard By Means of Physically Based Modelling," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 31(1), pages 289-304, January.
    4. A. Clerici & S. Perego & C. Tellini & P. Vescovi, 2010. "Landslide failure and runout susceptibility in the upper T. Ceno valley (Northern Apennines, Italy)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 52(1), pages 1-29, January.
    5. Chang-Jo Chung & Andrea Fabbri, 2003. "Validation of Spatial Prediction Models for Landslide Hazard Mapping," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 30(3), pages 451-472, November.
    6. T. Fernández & C. Irigaray & R. El Hamdouni & J. Chacón, 2003. "Methodology for Landslide Susceptibility Mapping by Means of a GIS. Application to the Contraviesa Area (Granada, Spain)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 30(3), pages 297-308, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Samuele Segoni & Francesco Caleca, 2021. "Definition of Environmental Indicators for a Fast Estimation of Landslide Risk at National Scale," Land, MDPI, vol. 10(6), pages 1-14, June.
    2. L. Lombardo & M. Cama & M. Maerker & E. Rotigliano, 2014. "A test of transferability for landslides susceptibility models under extreme climatic events: application to the Messina 2009 disaster," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 74(3), pages 1951-1989, December.
    3. Ali Azedou & Said Lahssini & Abdellatif Khattabi & Modeste Meliho & Nabil Rifai, 2021. "A Methodological Comparison of Three Models for Gully Erosion Susceptibility Mapping in the Rural Municipality of El Faid (Morocco)," Sustainability, MDPI, vol. 13(2), pages 1-30, January.
    4. Jawad Ghafoor & Marie Anne Eurie Forio & Peter L. M. Goethals, 2022. "Spatially Explicit River Basin Models for Cost-Benefit Analyses to Optimize Land Use," Sustainability, MDPI, vol. 14(14), pages 1-16, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chong Xu & Xiwei Xu & Fuchu Dai & Zhide Wu & Honglin He & Feng Shi & Xiyan Wu & Suning Xu, 2013. "Application of an incomplete landslide inventory, logistic regression model and its validation for landslide susceptibility mapping related to the May 12, 2008 Wenchuan earthquake of China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 68(2), pages 883-900, September.
    2. Anna Małka, 2021. "Landslide susceptibility mapping of Gdynia using geographic information system-based statistical models," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 107(1), pages 639-674, May.
    3. Francesca Vergari, 2015. "Assessing soil erosion hazard in a key badland area of Central Italy," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 79(1), pages 71-95, November.
    4. Cristina Tarantino & Palma Blonda & Guido Pasquariello, 2007. "Remote sensed data for automatic detection of land-use changes due to human activity in support to landslide studies," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 41(1), pages 245-267, April.
    5. A. Clerici & S. Perego & C. Tellini & P. Vescovi, 2010. "Landslide failure and runout susceptibility in the upper T. Ceno valley (Northern Apennines, Italy)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 52(1), pages 1-29, January.
    6. E. Rotigliano & C. Cappadonia & C. Conoscenti & D. Costanzo & V. Agnesi, 2012. "Slope units-based flow susceptibility model: using validation tests to select controlling factors," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 61(1), pages 143-153, March.
    7. Kourosh Shirani & Mehrdad Pasandi & Alireza Arabameri, 2018. "Landslide susceptibility assessment by Dempster–Shafer and Index of Entropy models, Sarkhoun basin, Southwestern Iran," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 93(3), pages 1379-1418, September.
    8. Raquel Melo & José Luís Zêzere, 2017. "Modeling debris flow initiation and run-out in recently burned areas using data-driven methods," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 88(3), pages 1373-1407, September.
    9. Khabat Khosravi & Ebrahim Nohani & Edris Maroufinia & Hamid Reza Pourghasemi, 2016. "A GIS-based flood susceptibility assessment and its mapping in Iran: a comparison between frequency ratio and weights-of-evidence bivariate statistical models with multi-criteria decision-making techn," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 83(2), pages 947-987, September.
    10. Ginés Suárez & María José Domínguez-Cuesta, 2021. "Improving landslide susceptibility predictive power through colluvium mapping in Tegucigalpa, Honduras," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 105(1), pages 47-66, January.
    11. Omid Rahmati & Ali Haghizadeh & Hamid Reza Pourghasemi & Farhad Noormohamadi, 2016. "Gully erosion susceptibility mapping: the role of GIS-based bivariate statistical models and their comparison," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 82(2), pages 1231-1258, June.
    12. Krishna Devkota & Amar Regmi & Hamid Pourghasemi & Kohki Yoshida & Biswajeet Pradhan & In Ryu & Megh Dhital & Omar Althuwaynee, 2013. "Landslide susceptibility mapping using certainty factor, index of entropy and logistic regression models in GIS and their comparison at Mugling–Narayanghat road section in Nepal Himalaya," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 65(1), pages 135-165, January.
    13. E. Rotigliano & V. Agnesi & C. Cappadonia & C. Conoscenti, 2011. "The role of the diagnostic areas in the assessment of landslide susceptibility models: a test in the sicilian chain," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 58(3), pages 981-999, September.
    14. Paolo Magliulo & Antonio Di Lisio & Filippo Russo & Antonio Zelano, 2008. "Geomorphology and landslide susceptibility assessment using GIS and bivariate statistics: a case study in southern Italy," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 47(3), pages 411-435, December.
    15. Anik Saha & Sunil Saha, 2021. "Application of statistical probabilistic methods in landslide susceptibility assessment in Kurseong and its surrounding area of Darjeeling Himalayan, India: RS-GIS approach," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(3), pages 4453-4483, March.
    16. Jaime Bonachea & Juan Remondo & José Ramón Díaz De Terán & Alberto González‐Díez & Antonio Cendrero, 2009. "Landslide Risk Models for Decision Making," Risk Analysis, John Wiley & Sons, vol. 29(11), pages 1629-1643, November.
    17. Lorena Liuzzo & Vincenzo Sammartano & Gabriele Freni, 2019. "Comparison between Different Distributed Methods for Flood Susceptibility Mapping," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(9), pages 3155-3173, July.
    18. Helen Cristina Dias & Marcelo Fischer Gramani & Carlos Henrique Grohmann & Carlos Bateira & Bianca Carvalho Vieira, 2021. "Statistical-based shallow landslide susceptibility assessment for a tropical environment: a case study in the southeastern Brazilian coast," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 108(1), pages 205-223, August.
    19. Roşca Sanda & Bilaşco Ştefan & Petrea Dănuţ & Fodorean Ioan & Vescan Iuliu & Filip Sorin, 2015. "Application of landslide hazard scenarios at annual scale in the Niraj River basin (Transylvania Depression, Romania)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 77(3), pages 1573-1592, July.
    20. Jewgenij Torizin & Michael Fuchs & Adnan Alam Awan & Ijaz Ahmad & Sardar Saeed Akhtar & Simon Sadiq & Asif Razzak & Daniel Weggenmann & Faseeh Fawad & Nimra Khalid & Faisan Sabir & Ahsan Jamal Khan, 2017. "Statistical landslide susceptibility assessment of the Mansehra and Torghar districts, Khyber Pakhtunkhwa Province, Pakistan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 89(2), pages 757-784, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:61:y:2012:i:1:p:127-141. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.