IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v114y2022i3d10.1007_s11069-022-05542-1.html
   My bibliography  Save this article

Developing landslide hazard scenario using the historical events for the Kashmir Himalaya

Author

Listed:
  • Bilquis Shah

    (University of Kashmir)

  • M. Sultan Bhat

    (University of Kashmir)

  • Akhtar Alam

    (University of Kashmir)

  • Hilal Ahmad Sheikh

    (University of Kashmir)

  • Noureen Ali

    (University of Kashmir)

Abstract

Landslides are globally ranked one of the deadliest natural hazards. However, there is a consensus among researchers that the overall occurrences and consequences of landslides are usually underestimated. Absence of comprehensive local or national databases in the historical archives about the landslide events leads to underestimations and misinterpretations of impending landslide hazard and susceptibilities in a region. Jammu and Kashmir is locus of landslide hazard; the region is characterised by mountainous terrain and complex geology, extensive unstable and tectonically active slopes, providing favourable environment for the landslide occurrence, particularly along the National Highway (NH-44) that is critical to region’s connectivity with the rest of India. However, limited information available on the historical landslides hampers the development of a reliable landslide catalogue for the region. In view of that, the present study focuses on retrieving information on landslide events and their impacts to develop a comprehensive database for the time period of 1990–2020 for Jammu and Kashmir, with a special focus on the Udhampur–Banihal section of the Jammu–Srinagar National Highway (NH-44). This analysis compiled a list of 960 landslide events from a range of secondary sources reported for the area during the selected time period. A hotspot analysis was also performed to understand the spatial distribution and concentration of the landslide events across the region. The annual and seasonal analysis of the events suggests an increasing trend. Moreover, the results reveal that a total of 1000 fatalities and 267 injuries occurred during this period. Out of 20 districts, 16 exhibit relatively higher exposure levels to the landslide hazard and the induced socioeconomic impacts. Most affects were found to have been experienced along the NH-44 with 1234 estimated occurrences reported in 260 days in the past three decades. The catalogue of landslide events and their impacts developed in this study is valuable for the development of landslide early warning system and other landslide hazard mitigation measures for the region.

Suggested Citation

  • Bilquis Shah & M. Sultan Bhat & Akhtar Alam & Hilal Ahmad Sheikh & Noureen Ali, 2022. "Developing landslide hazard scenario using the historical events for the Kashmir Himalaya," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 114(3), pages 3763-3785, December.
  • Handle: RePEc:spr:nathaz:v:114:y:2022:i:3:d:10.1007_s11069-022-05542-1
    DOI: 10.1007/s11069-022-05542-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-022-05542-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-022-05542-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. David Petley & Gareth Hearn & Andrew Hart & Nicholas Rosser & Stuart Dunning & Katie Oven & Wishart Mitchell, 2007. "Trends in landslide occurrence in Nepal," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 43(1), pages 23-44, October.
    2. Noureen Ali & Akhtar Alam & M. Sultan Bhat & Bilquis Shah, 2022. "Using historical data for developing a hazard and disaster profile of the Kashmir valley for the period 1900–2020," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 114(2), pages 1609-1646, November.
    3. Jane Qiu, 2014. "Landslide risks rise up agenda," Nature, Nature, vol. 511(7509), pages 272-273, July.
    4. Maurizio Lazzari & Dario Gioia & Bernardino Anzidei, 2018. "Landslide inventory of the Basilicata region (Southern Italy)," Journal of Maps, Taylor & Francis Journals, vol. 14(2), pages 348-356, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Derly Gómez & Edwin F. García & Edier Aristizábal, 2023. "Spatial and temporal landslide distributions using global and open landslide databases," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 117(1), pages 25-55, May.
    2. Fanyu Zhang & Jianbing Peng & Xiaowei Huang & Hengxing Lan, 2021. "Hazard assessment and mitigation of non-seismically fatal landslides in China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 106(1), pages 785-804, March.
    3. Randell, Heather & Jiang, Chengsheng & Liang, Xin-Zhong & Murtugudde, Raghu & Sapkota, Amir, 2021. "Food insecurity and compound environmental shocks in Nepal: Implications for a changing climate," World Development, Elsevier, vol. 145(C).
    4. Xiang-Zhou Xu & Wen-Zhao Guo & Ya-Kun Liu & Jian-Zhong Ma & Wen-Long Wang & Hong-Wu Zhang & Hang Gao, 2017. "Landslides on the Loess Plateau of China: a latest statistics together with a close look," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 86(3), pages 1393-1403, April.
    5. Thomas Stanley & Dalia B. Kirschbaum, 2017. "A heuristic approach to global landslide susceptibility mapping," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 87(1), pages 145-164, May.
    6. G. Sakkas & I. Misailidis & N. Sakellariou & V. Kouskouna & G. Kaviris, 2016. "Modeling landslide susceptibility in Greece: a weighted linear combination approach using analytic hierarchical process, validated with spatial and statistical analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 84(3), pages 1873-1904, December.
    7. Dalia Kirschbaum & Robert Adler & Yang Hong & Stephanie Hill & Arthur Lerner-Lam, 2010. "A global landslide catalog for hazard applications: method, results, and limitations," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 52(3), pages 561-575, March.
    8. Alberto Lanzavecchia & Maria Palumbo & Bharat Singh Thapa, 2021. "Climate Change And Microfinance: A Wake-Up Call For Policy Makers," "Marco Fanno" Working Papers 0268, Dipartimento di Scienze Economiche "Marco Fanno".
    9. Olga Petrucci & Paola Salvati & Luigi Aceto & Cinzia Bianchi & Angela Aurora Pasqua & Mauro Rossi & Fausto Guzzetti, 2017. "The Vulnerability of People to Damaging Hydrogeological Events in the Calabria Region (Southern Italy)," IJERPH, MDPI, vol. 15(1), pages 1-28, December.
    10. Xiaoyi Shao & Siyuan Ma & Chong Xu & Lingling Shen & Yongkun Lu, 2020. "Inventory, Distribution and Geometric Characteristics of Landslides in Baoshan City, Yunnan Province, China," Sustainability, MDPI, vol. 12(6), pages 1-23, March.
    11. Langping Li & Hengxing Lan, 2020. "Integration of Spatial Probability and Size in Slope-Unit-Based Landslide Susceptibility Assessment: A Case Study," IJERPH, MDPI, vol. 17(21), pages 1-17, November.
    12. Turner, Graham M. & Dunlop, Michael & Candy, Seona, 2016. "The impacts of expansion and degradation on Australian cropping yields—An integrated historical perspective," Agricultural Systems, Elsevier, vol. 143(C), pages 22-37.
    13. Joshua N. Jones & Sarah J. Boulton & Martin Stokes & Georgina L. Bennett & Michael R. Z. Whitworth, 2021. "30-year record of Himalaya mass-wasting reveals landscape perturbations by extreme events," Nature Communications, Nature, vol. 12(1), pages 1-15, December.
    14. Pantha, Bhoj Raj & Yatabe, Ryuichi & Bhandary, Netra Prakash, 2010. "GIS-based highway maintenance prioritization model: an integrated approach for highway maintenance in Nepal mountains," Journal of Transport Geography, Elsevier, vol. 18(3), pages 426-433.
    15. Anup Neupane & Kabi Raj Paudyal, 2021. "Lithological Control on Landslide in the Siwalik Section of the Lakhandehi Khola Watershed of Sarlahi District, South-Eastern Nepal," Journal of Development Innovations, KarmaQuest International, vol. 5(2), pages 44-65, December.
    16. Sheng Ma & Jian Chen & Saier Wu & Yurou Li, 2023. "Landslide Susceptibility Prediction Using Machine Learning Methods: A Case Study of Landslides in the Yinghu Lake Basin in Shaanxi," Sustainability, MDPI, vol. 15(22), pages 1-26, November.
    17. Luigi Spalluto & Antonio Fiore & Maria Nilla Miccoli & Mario Parise, 2021. "Activity maps of multi-source mudslides from the Daunia Apennines (Apulia, southern Italy)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 106(1), pages 277-301, March.
    18. Purna Bahadur Thapa & Saurav Lamichhane & Khagendra Prasad Joshi & Aayoush Raj Regmi & Divya Bhattarai & Hari Adhikari, 2023. "Landslide Susceptibility Assessment in Nepal’s Chure Region: A Geospatial Analysis," Land, MDPI, vol. 12(12), pages 1-20, December.
    19. Guilherme Garcia Oliveira & Luis Fernando Chimelo Ruiz & Laurindo Antonio Guasselli & Claus Haetinger, 2019. "Random forest and artificial neural networks in landslide susceptibility modeling: a case study of the Fão River Basin, Southern Brazil," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 99(2), pages 1049-1073, November.
    20. Chelsea Dandridge & Thomas A. Stanley & Dalia B. Kirschbaum & Venkataraman Lakshmi, 2023. "Spatial and Temporal Analysis of Global Landslide Reporting Using a Decade of the Global Landslide Catalog," Sustainability, MDPI, vol. 15(4), pages 1-22, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:114:y:2022:i:3:d:10.1007_s11069-022-05542-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.