IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v116y2023i3d10.1007_s11069-023-05836-y.html
   My bibliography  Save this article

Flood, landslides, forest fire, and earthquake susceptibility maps using machine learning techniques and their combination

Author

Listed:
  • Hamid Reza Pourghasemi

    (Shiraz University)

  • Soheila Pouyan

    (Shiraz University)

  • Mojgan Bordbar

    (Islamic Azad University
    University of Campania “Luigi Vanvitelli”)

  • Foroogh Golkar

    (Shiraz University)

  • John J. Clague

    (Simon Fraser University)

Abstract

Protection against natural hazards (i.e., floods, landslides, forest fires, and earthquakes) is vital in land-use planning, especially in high-risk areas. Multi-hazard susceptibility maps can be used by land-use manager to guide urban development, to minimize the risk of natural disasters. The objective of the present study was to use four machine learning models to produce multi-hazard susceptibility maps in Khuzestan Province, Iran. In this work, four different natural hazards (flood, landslides, forest fire, and earthquake) using support vector machine (SVM), boosted regression tree (BRT), random forest (RF), and maximum entropy (MaxEnt) techniques were created. Effective factors used in the study include elevation, slope degree, slope aspect, rainfall, temperature, lithology, land use, normalized difference vegetation index (NDVI), wind exposition index (WEI), topographic wetness index (TWI), plan curvature, drainage density, distance from roads, distance from rivers, and distance from villages. The spatial earthquake hazard in the study area was derived from a peak ground acceleration (PGA) susceptibility map. The second step in the study was to combine the model-generated maps of the four hazards in a reliable multi-hazard map. The mean decrease Gini (MDG) method was used to determine the level of importance of each effective factor on the occurrence of landslides, floods, and forest fires. Finally, “area under the curve” (AUC) values were calculated to validate the forest fire, flood, and landslide susceptibility maps and to compare the predictive capability of the machine learning models. The RF model yielded the highest AUC values for the forest fire, flood, and landslide susceptibility maps, specifically, 0.81, 0.85, and 0.94, respectively.

Suggested Citation

  • Hamid Reza Pourghasemi & Soheila Pouyan & Mojgan Bordbar & Foroogh Golkar & John J. Clague, 2023. "Flood, landslides, forest fire, and earthquake susceptibility maps using machine learning techniques and their combination," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(3), pages 3797-3816, April.
  • Handle: RePEc:spr:nathaz:v:116:y:2023:i:3:d:10.1007_s11069-023-05836-y
    DOI: 10.1007/s11069-023-05836-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-023-05836-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-023-05836-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mahya Norallahi & Hesam Seyed Kaboli, 2021. "Urban flood hazard mapping using machine learning models: GARP, RF, MaxEnt and NB," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 106(1), pages 119-137, March.
    2. Morteza Mashayekhi & Robin Gras, 2017. "Rule Extraction from Decision Trees Ensembles: New Algorithms Based on Heuristic Search and Sparse Group Lasso Methods," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 16(06), pages 1707-1727, November.
    3. Aertsen, Wim & Kint, Vincent & van Orshoven, Jos & Özkan, Kürşad & Muys, Bart, 2010. "Comparison and ranking of different modelling techniques for prediction of site index in Mediterranean mountain forests," Ecological Modelling, Elsevier, vol. 221(8), pages 1119-1130.
    4. Guilherme Garcia Oliveira & Luis Fernando Chimelo Ruiz & Laurindo Antonio Guasselli & Claus Haetinger, 2019. "Random forest and artificial neural networks in landslide susceptibility modeling: a case study of the Fão River Basin, Southern Brazil," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 99(2), pages 1049-1073, November.
    5. Vahedberdi Sheikh & Aiding Kornejady & Majid Ownegh, 2019. "Application of the coupled TOPSIS–Mahalanobis distance for multi-hazard-based management of the target districts of the Golestan Province, Iran," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 96(3), pages 1335-1365, April.
    6. Minerva Singh & Zhuhua Huang, 2022. "Analysis of Forest Fire Dynamics, Distribution and Main Drivers in the Atlantic Forest," Sustainability, MDPI, vol. 14(2), pages 1-15, January.
    7. Jiajun Wang & Zhichao He & Wenguo Weng, 2020. "A review of the research into the relations between hazards in multi-hazard risk analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 104(3), pages 2003-2026, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Katharina Hecht & Abraham Ortega Reboso & Michelle van der Vegt & Jaco Appelman & Maibritt Pedersen Zari, 2024. "Ecologically Regenerative Building Systems through Exergy Efficiency: Designing for Structural Order and Ecosystem Services," Land, MDPI, vol. 13(9), pages 1-18, August.
    2. Fanfan Huang & Dan Zhu & Yichen Zhang & Jiquan Zhang & Ning Wang & Zhennan Dong, 2024. "Urban Flooding Disaster Risk Assessment Utilizing the MaxEnt Model and Game Theory: A Case Study of Changchun, China," Sustainability, MDPI, vol. 16(19), pages 1-23, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiang Zhang & Minghui Zhang & Xin Liu & Berhanu Keno Terfa & Won-Ho Nam & Xihui Gu & Xu Zhang & Chao Wang & Jian Yang & Peng Wang & Chenghong Hu & Wenkui Wu & Nengcheng Chen, 2024. "Review on the progress and future prospects of geological disasters prediction in the era of artificial intelligence," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 120(13), pages 11485-11525, October.
    2. Rui Yuan & Jing Chen, 2022. "A hybrid deep learning method for landslide susceptibility analysis with the application of InSAR data," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 114(2), pages 1393-1426, November.
    3. Seyed Naghibi & Hamid Pourghasemi, 2015. "A Comparative Assessment Between Three Machine Learning Models and Their Performance Comparison by Bivariate and Multivariate Statistical Methods in Groundwater Potential Mapping," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(14), pages 5217-5236, November.
    4. Amin Salehpour Jam & Jamal Mosaffaie & Faramarz Sarfaraz & Samad Shadfar & Rouhangiz Akhtari, 2021. "GIS-based landslide susceptibility mapping using hybrid MCDM models," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 108(1), pages 1025-1046, August.
    5. Mert Edali, 2022. "Pattern‐oriented analysis of system dynamics models via random forests," System Dynamics Review, System Dynamics Society, vol. 38(2), pages 135-166, April.
    6. Xiao-yan Huang & Li He & Hua-sheng Zhao & Ying Huang & Yu-shuang Wu, 2021. "Prediction model based on the Laplacian eigenmap method combined with a random forest algorithm for rainstorm satellite images during the first annual rainy season in South China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 107(1), pages 331-353, May.
    7. Sukanta Malakar & Abhishek K. Rai & Arun K. Gupta, 2023. "Earthquake risk mapping in the Himalayas by integrated analytical hierarchy process, entropy with neural network," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(1), pages 951-975, March.
    8. Bai, Yiping & Wu, Jiansong & Liu, Kunqi & Sun, Yuxin & Shen, Siyao & Cao, Jiaojiao & Cai, Jitao, 2024. "Energy-based coupling risk assessment (CRA) model for urban underground utility tunnels," Reliability Engineering and System Safety, Elsevier, vol. 250(C).
    9. Kitikidou, Kyriaki & Petrou, Petros & Milios, Elias, 2012. "Dominant height growth and site index curves for Calabrian pine (Pinus brutia Ten.) in central Cyprus," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(2), pages 1323-1329.
    10. Mária Barančoková & Matej Šošovička & Peter Barančok & Peter Barančok, 2021. "Predictive Modelling of Landslide Susceptibility in the Western Carpathian Flysch Zone," Land, MDPI, vol. 10(12), pages 1-28, December.
    11. Bahram Choubin & Farzaneh Sajedi Hosseini & Omid Rahmati & Mansor Mehdizadeh Youshanloei, 2023. "A step toward considering the return period in flood spatial modeling," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 115(1), pages 431-460, January.
    12. Paulo Rodolpho Pereira Hader & Fábio Augusto Gomes Vieira Reis & Anna Silvia Palcheco Peixoto, 2022. "Landslide risk assessment considering socionatural factors: methodology and application to Cubatão municipality, São Paulo, Brazil," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 110(2), pages 1273-1304, January.
    13. Alexandra M. Thorn & Jonathan R. Thompson & Joshua S. Plisinski, 2016. "Patterns and Predictors of Recent Forest Conversion in New England," Land, MDPI, vol. 5(3), pages 1-17, September.
    14. Zhao, Yunmeng & Na, Mula & Guo, Ying & Liu, Xingping & Tong, Zhijun & Zhang, Jiquan & Zhao, Chunli, 2023. "Dynamic vulnerability assessment of maize under low temperature and drought concurrent stress in Songliao Plain," Agricultural Water Management, Elsevier, vol. 286(C).
    15. Alana M. Weir & Thomas M. Wilson & Mark S. Bebbington & Sarah Beaven & Teresa Gordon & Craig Campbell-Smart & Stuart Mead & James H. Williams & Roger Fairclough, 2024. "Approaching the challenge of multi-phase, multi-hazard volcanic impact assessment through the lens of systemic risk: application to Taranaki Mounga," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 120(10), pages 9327-9360, August.
    16. Youssef El Miloudi & Younes El Kharim & Ali Bounab & Rachid El Hamdouni, 2024. "Effect of Rockfall Spatial Representation on the Accuracy and Reliability of Susceptibility Models (The Case of the Haouz Dorsale Calcaire, Morocco)," Land, MDPI, vol. 13(2), pages 1-16, February.
    17. Eslam Mohammed Abdelkader & Abobakr Al-Sakkaf & Ghasan Alfalah & Nehal Elshaboury, 2022. "Hybrid Differential Evolution-Based Regression Tree Model for Predicting Downstream Dam Hazard Potential," Sustainability, MDPI, vol. 14(5), pages 1-21, March.
    18. Mei Cai & Stephen M. Marson, 2021. "A regional Natech risk assessment based on a Natech-prone facility network for dependent events," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 107(3), pages 2155-2174, July.
    19. Mert Edali & Gönenç Yücel, 2020. "Analysis of an individual‐based influenza epidemic model using random forest metamodels and adaptive sequential sampling," Systems Research and Behavioral Science, Wiley Blackwell, vol. 37(6), pages 936-958, November.
    20. Zhongping Zeng & Yujia Li & Jinyu Lan & Abdur Rahim Hamidi, 2021. "Utilizing User-Generated Content and GIS for Flood Susceptibility Modeling in Mountainous Areas: A Case Study of Jian City in China," Sustainability, MDPI, vol. 13(12), pages 1-18, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:116:y:2023:i:3:d:10.1007_s11069-023-05836-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.