IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v114y2022i3d10.1007_s11069-022-05487-5.html
   My bibliography  Save this article

Establishing a GIS-based evaluation method considering spatial heterogeneity for debris flow susceptibility mapping at the regional scale

Author

Listed:
  • Shengwu Qin

    (Jilin University)

  • Shuangshuang Qiao

    (Jilin University)

  • Jingyu Yao

    (Jilin University)

  • Lingshuai Zhang

    (Jilin University)

  • Xiaowei Liu

    (Jilin University)

  • Xu Guo

    (Jilin University)

  • Yang Chen

    (Jilin University)

  • Jingbo Sun

    (Jilin University)

Abstract

Susceptibility mapping is an effective means of preventing debris flow disasters. However, previous studies have failed to solve spatial heterogeneity well, especially at the regional scale. The main objective of this study is to solve the spatial heterogeneity of regional-scale debris flow susceptibility (DFS) mapping by establishing a geographic information system (GIS)-based processing framework. The framework was realized by integrating the determination factor (DFactor) model with machine learning models. The DFactor model established different combinations of evaluation factors in each local region and clarified the differing contributions of influencing factors to DFS. To test the feasibility of the framework, the support vector machine (SVM) and two-dimensional convolutional neural network (CNN) were integrated with the DFactor model (DFactor-SVM and DFactor-CNN) to evaluate DFS in Jilin Province, China. The individual models (SVM and CNN) were also used to map the DFS for comparison with the integrated models. For debris flow modeling, 868 debris flow samples were collected and randomly divided into two datasets: 70% of the samples were used for training and the result was used for verification. The results of the receiver operating characteristic curve showed that the integrated models performed better. The DFactor-CNN model had the highest predictive accuracy, followed by the DFactor-SVM, CNN and SVM models. In general, the GIS-based processing framework maximizes the contribution of the influencing factors to debris flows and enhances the prediction ability of models. Furthermore, it provides a reliable means to predict debris flows at the regional scale.

Suggested Citation

  • Shengwu Qin & Shuangshuang Qiao & Jingyu Yao & Lingshuai Zhang & Xiaowei Liu & Xu Guo & Yang Chen & Jingbo Sun, 2022. "Establishing a GIS-based evaluation method considering spatial heterogeneity for debris flow susceptibility mapping at the regional scale," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 114(3), pages 2709-2738, December.
  • Handle: RePEc:spr:nathaz:v:114:y:2022:i:3:d:10.1007_s11069-022-05487-5
    DOI: 10.1007/s11069-022-05487-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-022-05487-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-022-05487-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. C. Chalkias & S. Kalogirou & M. Ferentinou, 2014. "Landslide susceptibility, Peloponnese Peninsula in South Greece," Journal of Maps, Taylor & Francis Journals, vol. 10(2), pages 211-222, April.
    2. Gökhan Demir & Mustafa Aytekin & Aykut Akgün & Sabriye İkizler & Orhan Tatar, 2013. "A comparison of landslide susceptibility mapping of the eastern part of the North Anatolian Fault Zone (Turkey) by likelihood-frequency ratio and analytic hierarchy process methods," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 65(3), pages 1481-1506, February.
    3. Wen Zhang & Jian-ping Chen & Qing Wang & Yuke An & Xin Qian & Liangjun Xiang & Longxiang He, 2013. "Susceptibility analysis of large-scale debris flows based on combination weighting and extension methods," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 66(2), pages 1073-1100, March.
    4. T. V. Tran & M. Alvioli & V. H. Hoang, 2022. "Description of a complex, rainfall-induced landslide within a multi-stage three-dimensional model," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 110(3), pages 1953-1968, February.
    5. Jingbo Sun & Shengwu Qin & Shuangshuang Qiao & Yang Chen & Gang Su & Qiushi Cheng & Yanqing Zhang & Xu Guo, 2021. "Exploring the impact of introducing a physical model into statistical methods on the evaluation of regional scale debris flow susceptibility," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 106(1), pages 881-912, March.
    6. D. W. Park & S. R. Lee & N. N. Vasu & S. H. Kang & J. Y. Park, 2016. "Coupled model for simulation of landslides and debris flows at local scale," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(3), pages 1653-1682, April.
    7. S. Modugno & S. C. M. Johnson & P. Borrelli & E. Alam & N. Bezak & H. Balzter, 2022. "Analysis of human exposure to landslides with a GIS multiscale approach," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 112(1), pages 387-412, May.
    8. Dimitrios Myronidis & Charalambos Papageorgiou & Stavros Theophanous, 2016. "Landslide susceptibility mapping based on landslide history and analytic hierarchy process (AHP)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(1), pages 245-263, March.
    9. Dimitrios Myronidis & Charalambos Papageorgiou & Stavros Theophanous, 2016. "Landslide susceptibility mapping based on landslide history and analytic hierarchy process (AHP)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(1), pages 245-263, March.
    10. Rajesh Kumar Dash & Philips Omowumi Falae & Debi Prasanna Kanungo, 2022. "Debris flow susceptibility zonation using statistical models in parts of Northwest Indian Himalayas—implementation, validation, and comparative evaluation," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 111(2), pages 2011-2058, March.
    11. Dieu Tien Bui & Biswajeet Pradhan & Owe Lofman & Inge Revhaug, 2012. "Landslide Susceptibility Assessment in Vietnam Using Support Vector Machines, Decision Tree, and Naïve Bayes Models," Mathematical Problems in Engineering, Hindawi, vol. 2012, pages 1-26, July.
    12. Wenbo Xu & Wenjuan Yu & Shaocai Jing & Guoping Zhang & Jianxi Huang, 2013. "Debris flow susceptibility assessment by GIS and information value model in a large-scale region, Sichuan Province (China)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 65(3), pages 1379-1392, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Emmanouil Psomiadis & Andreas Papazachariou & Konstantinos X. Soulis & Despoina-Simoni Alexiou & Ioannis Charalampopoulos, 2020. "Landslide Mapping and Susceptibility Assessment Using Geospatial Analysis and Earth Observation Data," Land, MDPI, vol. 9(5), pages 1-26, April.
    2. Gökhan Demir, 2018. "Landslide susceptibility mapping by using statistical analysis in the North Anatolian Fault Zone (NAFZ) on the northern part of Suşehri Town, Turkey," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 92(1), pages 133-154, May.
    3. Amin Salehpour Jam & Jamal Mosaffaie & Faramarz Sarfaraz & Samad Shadfar & Rouhangiz Akhtari, 2021. "GIS-based landslide susceptibility mapping using hybrid MCDM models," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 108(1), pages 1025-1046, August.
    4. Rui-Xuan Tang & E-Chuan Yan & Tao Wen & Xiao-Meng Yin & Wei Tang, 2021. "Comparison of Logistic Regression, Information Value, and Comprehensive Evaluating Model for Landslide Susceptibility Mapping," Sustainability, MDPI, vol. 13(7), pages 1-25, March.
    5. Kamila Hodasová & Martin Bednarik, 2021. "Effect of using various weighting methods in a process of landslide susceptibility assessment," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 105(1), pages 481-499, January.
    6. G. Sakkas & I. Misailidis & N. Sakellariou & V. Kouskouna & G. Kaviris, 2016. "Modeling landslide susceptibility in Greece: a weighted linear combination approach using analytic hierarchical process, validated with spatial and statistical analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 84(3), pages 1873-1904, December.
    7. Christos Polykretis & Christos Chalkias, 2018. "Comparison and evaluation of landslide susceptibility maps obtained from weight of evidence, logistic regression, and artificial neural network models," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 93(1), pages 249-274, August.
    8. Rajesh Kumar Dash & Philips Omowumi Falae & Debi Prasanna Kanungo, 2022. "Debris flow susceptibility zonation using statistical models in parts of Northwest Indian Himalayas—implementation, validation, and comparative evaluation," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 111(2), pages 2011-2058, March.
    9. Cahio Guimarães Seabra Eiras & Juliana Ribeiro Gonçalves de Souza & Renata Delicio Andrade de Freitas & César Falcão Barella & Tiago Martins Pereira, 2021. "Discriminant analysis as an efficient method for landslide susceptibility assessment in cities with the scarcity of predisposition data," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 107(2), pages 1427-1442, June.
    10. Silvana Moragues & María Gabriela Lenzano & Mario Lanfri & Stella Moreiras & Esteban Lannutti & Luis Lenzano, 2021. "Analytic hierarchy process applied to landslide susceptibility mapping of the North Branch of Argentino Lake, Argentina," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 105(1), pages 915-941, January.
    11. Sara Beheshtifar, 2023. "Identification of landslide-prone zones using a GIS-based multi-criteria decision analysis and region-growing algorithm in uncertain conditions," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 115(2), pages 1475-1497, January.
    12. Quynh Duy Bui & Hang Ha & Dong Thanh Khuc & Dinh Quoc Nguyen & Jason von Meding & Lam Phuong Nguyen & Chinh Luu, 2023. "Landslide susceptibility prediction mapping with advanced ensemble models: Son La province, Vietnam," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(2), pages 2283-2309, March.
    13. Antonio Ganga & Mario Elia & Ersilia D’Ambrosio & Simona Tripaldi & Gian Franco Capra & Francesco Gentile & Giovanni Sanesi, 2022. "Assessing Landslide Susceptibility by Coupling Spatial Data Analysis and Logistic Model," Sustainability, MDPI, vol. 14(14), pages 1-13, July.
    14. Konstantinos, Ioannou & Georgios, Tsantopoulos & Garyfalos, Arabatzis, 2019. "A Decision Support System methodology for selecting wind farm installation locations using AHP and TOPSIS: Case study in Eastern Macedonia and Thrace region, Greece," Energy Policy, Elsevier, vol. 132(C), pages 232-246.
    15. Masanori Kohno & Yuki Higuchi & Yusuke Ono, 2023. "Evaluating earthquake-induced widespread slope failure hazards using an AHP-GIS combination," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(2), pages 1485-1512, March.
    16. Moumita Palchaudhuri & Sujata Biswas, 2016. "Application of AHP with GIS in drought risk assessment for Puruliya district, India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 84(3), pages 1905-1920, December.
    17. Viet-Ha Nhu & Ataollah Shirzadi & Himan Shahabi & Sushant K. Singh & Nadhir Al-Ansari & John J. Clague & Abolfazl Jaafari & Wei Chen & Shaghayegh Miraki & Jie Dou & Chinh Luu & Krzysztof Górski & Binh, 2020. "Shallow Landslide Susceptibility Mapping: A Comparison between Logistic Model Tree, Logistic Regression, Naïve Bayes Tree, Artificial Neural Network, and Support Vector Machine Algorithms," IJERPH, MDPI, vol. 17(8), pages 1-30, April.
    18. Luca Schilirò & Gian Marco Marmoni & Matteo Fiorucci & Massimo Pecci & Gabriele Scarascia Mugnozza, 2023. "Preliminary insights from hydrological field monitoring for the evaluation of landslide triggering conditions over large areas," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 118(2), pages 1401-1426, September.
    19. Tongde Chen & Juying Jiao & Lingling Wang & Wei Wei & Chunjing Zhao & Shuwei Wei, 2024. "Evaluation and Promotion of Alluvial Fan Land Suitability for Agriculture in the Lhasa River Basin, Qinghai–Tibet Plateau," Agriculture, MDPI, vol. 14(8), pages 1-22, July.
    20. Biswajeet Pradhan & Mohammed Abokharima & Mustafa Jebur & Mahyat Tehrany, 2014. "Land subsidence susceptibility mapping at Kinta Valley (Malaysia) using the evidential belief function model in GIS," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 73(2), pages 1019-1042, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:114:y:2022:i:3:d:10.1007_s11069-022-05487-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.