IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v49y2009i3p437-458.html
   My bibliography  Save this article

Vulnerability of the Atlantic Patagonian coast to tsunamis generated by submarine earthquakes located in the Scotia Arc region. Some numerical experiments

Author

Listed:
  • Walter Dragani
  • Enrique D’Onofrio
  • Walter Grismeyer
  • Monica Fiore
  • Roberto Violante
  • Elizabeth Rovere

Abstract

The Scotia Arc is one of two regions in the Atlantic Ocean with greater potential for tsunami generation from seismic and volcanic sources. A numerical modeling study was undertaken to determine tsunami generation from postulated sources along the Arc and tsunami wave amplification or attenuation along the Patagonian continental shelf. Sea level oscillation represented by a simple sinusoidal wave function applied at the boundary of the numerical grid, which simulated the tsunami entering the computational domain, was implemented as forcing. The validation of this model was carried out by comparing the maximum amplitudes recorded and simulated at Santa Teresita and Mar del Plata (Buenos Aires province) after the occurrence of earthquake and subsequent tsunami in Sumatra (December 2004). From numerical simulations it can be seen that the tsunami propagation is highly affected by bathymetric refraction on the Patagonian continental shelf and the wave amplitude is significantly attenuated on the inner continental shelf. Maximum amplifications were obtained around Malvinas (Falkland) Islands and Burdwood bank because the wave propagates almost without refracting and the shoaling effect is highly significant there. Copyright Springer Science+Business Media B.V. 2009

Suggested Citation

  • Walter Dragani & Enrique D’Onofrio & Walter Grismeyer & Monica Fiore & Roberto Violante & Elizabeth Rovere, 2009. "Vulnerability of the Atlantic Patagonian coast to tsunamis generated by submarine earthquakes located in the Scotia Arc region. Some numerical experiments," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 49(3), pages 437-458, June.
  • Handle: RePEc:spr:nathaz:v:49:y:2009:i:3:p:437-458
    DOI: 10.1007/s11069-008-9289-4
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11069-008-9289-4
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11069-008-9289-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Seth Stein & Emile A. Okal, 2005. "Speed and size of the Sumatra earthquake," Nature, Nature, vol. 434(7033), pages 581-582, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Iael Perez & Stefania Wörner & Walter Dragani & Guido Bacino & Rubén Medina, 2020. "Meteorite impacts in the ocean: the danger of tsunamis on the coast of Buenos Aires Province, Argentina," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 103(2), pages 2339-2354, September.
    2. Donaldo Mauricio Bran & Fermín Palma & Sebastián Principi & Emanuele Lodolo & Luca Baradello & Jorge Gabriel Lozano & Alejandro Alberto Tassone, 2023. "High-resolution seismic characterization of post-glacial subaqueous mass movements in the Beagle Channel (Tierra del Fuego, Argentina): dynamics and tsunami hazard implications," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 118(1), pages 455-477, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. A. Narayana, 2011. "Tectonic geomorphology, tsunamis and environmental hazards: reference to Andaman-Nicobar Islands," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 57(1), pages 65-82, April.
    2. Wenqi Du & Tso-Chien Pan, 2020. "Probabilistic seismic hazard assessment for Singapore," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 103(3), pages 2883-2903, September.
    3. Kirti Srivastava & R. Krishna Kumar & M. Swapna & V. Swaroopa Rani & V. Dimri, 2012. "Inundation studies for Nagapattinam region on the east coast of India due to tsunamigenic earthquakes from the Andaman region," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 63(1), pages 211-221, August.
    4. Panon Latcharote & Khaled Al-Salem & Anawat Suppasri & Tanuspong Pokavanich & Shinji Toda & Yogeesha Jayaramu & Abdullah Al-Enezi & Alanoud Al-Ragum & Fumihiko Imamura, 2018. "Tsunami hazard evaluation for Kuwait and Arabian Gulf due to Makran Subduction Zone and Subaerial landslides," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 93(1), pages 127-152, September.
    5. Hermann Fritz & Emile Okal, 2008. "Socotra Island, Yemen: field survey of the 2004 Indian Ocean tsunami," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 46(1), pages 107-117, July.
    6. A. Kumar & S. Wesley, 2012. "Impact of the 2004 Sumatran tsunami on the diversity of intertidal brachyuran assemblages of Maavah, Laamu Atoll, Maldives," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 64(1), pages 493-510, October.
    7. Basab Mukhopadhyay & Sujit Dasgupta & M. Fnais & Manoj Mukhopadhyay, 2011. "Modelling the pore fluid diffusion process in aftershock initiation for 2004 Sumatra earthquake: implications for marine geohazard estimation in the Andaman region," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 57(1), pages 39-49, April.
    8. T. Rossetto & N. Peiris & A. Pomonis & S. Wilkinson & D. Re & R. Koo & S. Gallocher, 2007. "The Indian Ocean tsunami of December 26, 2004: observations in Sri Lanka and Thailand," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 42(1), pages 105-124, July.
    9. G. Gopinath & F. Løvholt & G. Kaiser & C. Harbitz & K. Srinivasa Raju & M. Ramalingam & Bhoop Singh, 2014. "Impact of the 2004 Indian Ocean tsunami along the Tamil Nadu coastline: field survey review and numerical simulations," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 72(2), pages 743-769, June.
    10. R. Tiwari & P. Krishnaveni, 2015. "Evidence of self-organization in Sumatra earthquakes: recurrence time and its geodynamical implications," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 77(1), pages 51-63, May.
    11. Lee, Y.L. & Affendi, Y.A. & Tajuddin, B.H. & Yusuf, Y.B. & Kee Alfan, A.A. & Anuar, E.A., 2005. "A post-tsunami assessment of coastal living resources of Langkawi archipelago, Peninsular malaysia," Naga, The WorldFish Center, vol. 28(1/2), pages 17-22.
    12. David Burbidge & Phil Cummins, 2007. "Assessing the threat to Western Australia from tsunami generated by earthquakes along the Sunda Arc," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 43(3), pages 319-331, December.
    13. S. Singh & J. Pacheco & M. Ordaz & R. Dattatrayam & G. Suresh & P. Baidya, 2012. "Estimating tsunami potential of earthquakes in the Sumatra–Andaman region based on broadband seismograms in India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 64(2), pages 1491-1510, November.
    14. Gegar Prasetya & Jose Borrero & Willem Lange & Kerry Black & Terry Healy, 2011. "Modeling of inundation dynamics on Banda Aceh, Indonesia during the great Sumatra tsunamis December 26, 2004," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 58(3), pages 1029-1055, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:49:y:2009:i:3:p:437-458. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.