IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v86y2017i3d10.1007_s11069-016-2738-6.html
   My bibliography  Save this article

Landslides on the Loess Plateau of China: a latest statistics together with a close look

Author

Listed:
  • Xiang-Zhou Xu

    (Chinese Academy of Sciences and Ministry of Water Resources
    Dalian University of Technology)

  • Wen-Zhao Guo

    (Dalian University of Technology)

  • Ya-Kun Liu

    (Dalian University of Technology)

  • Jian-Zhong Ma

    (Chinese Academy of Sciences and Ministry of Water Resources)

  • Wen-Long Wang

    (Chinese Academy of Sciences and Ministry of Water Resources)

  • Hong-Wu Zhang

    (Tsinghua University)

  • Hang Gao

    (Dalian University of Technology)

Abstract

Landslide plays an important role in landscape evolution, delivers huge amounts of sediment to rivers and seriously affects the structure and function of ecosystems and society. Here, a statistical analysis together with a field investigation was carried out on the Loess Plateau of China to address the challenges. The study tracks landslide-related deaths and collects knowledge about this natural hazard. Since the 1980s, 53 fatal landslides have occurred, causing 717 deaths. As the most important trigger, rainfall induced 40% of the catastrophic landslides, while other factors, i.e., human activities, freeze–thaw and earthquake, accounted for 36, 23 and 1%, respectively. Furthermore, landslide frequency and death toll related to human activities were increasing as time went on. Landslide also plays an important role in sediment delivery, especially in areas with steep terrain. Sediment discharge from landslides accounts for a considerable proportion of the total soil loss in the upper and middle reaches of the Yellow River. In some catchments of the Loess Plateau, landslides contributed over 50% of the total sediment discharge. The result shows that landslide is a widespread geologic hazard in the rural area of the Loess Plateau, China.

Suggested Citation

  • Xiang-Zhou Xu & Wen-Zhao Guo & Ya-Kun Liu & Jian-Zhong Ma & Wen-Long Wang & Hong-Wu Zhang & Hang Gao, 2017. "Landslides on the Loess Plateau of China: a latest statistics together with a close look," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 86(3), pages 1393-1403, April.
  • Handle: RePEc:spr:nathaz:v:86:y:2017:i:3:d:10.1007_s11069-016-2738-6
    DOI: 10.1007/s11069-016-2738-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-016-2738-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-016-2738-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Y. Tang & Q. Xue & Z. Li & W. Feng, 2015. "Three modes of rainfall infiltration inducing loess landslide," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 79(1), pages 137-150, October.
    2. Massimo Conforti & Stefania Pascale & Francesco Sdao, 2015. "Mass movements inventory map of the Rubbio stream catchment (Basilicata - South Italy)," Journal of Maps, Taylor & Francis Journals, vol. 11(3), pages 454-463, May.
    3. Jane Qiu, 2014. "Landslide risks rise up agenda," Nature, Nature, vol. 511(7509), pages 272-273, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhuo Chen & Danqing Song, 2021. "Numerical investigation of the recent Chenhecun landslide (Gansu, China) using the discrete element method," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 105(1), pages 717-733, January.
    2. Xiangjian Rui & Lei Nie & Yan Xu & Hong Wang, 2019. "Land Degeneration due to Water Infiltration and Sub-Erosion: A Case Study of Soil Slope Failure at the National Geological Park of Qian-an Mud Forest, China," Sustainability, MDPI, vol. 11(17), pages 1-17, August.
    3. Xing Su & Wanhong Wei & Weilin Ye & Xingmin Meng & Weijiang Wu, 2019. "Predicting landslide sliding distance based on energy dissipation and mass point kinematics," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 96(3), pages 1367-1385, April.
    4. Zhilu Chang & Huanxiang Gao & Faming Huang & Jiawu Chen & Jinsong Huang & Zizheng Guo, 2020. "Study on the creep behaviours and the improved Burgers model of a loess landslide considering matric suction," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 103(1), pages 1479-1497, August.
    5. Fanyu Zhang & Jianbing Peng & Xiaowei Huang & Hengxing Lan, 2021. "Hazard assessment and mitigation of non-seismically fatal landslides in China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 106(1), pages 785-804, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Somnath Bera & Vaibhav Kumar Upadhyay & Balamurugan Guru & Thomas Oommen, 2021. "Landslide inventory and susceptibility models considering the landslide typology using deep learning: Himalayas, India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 108(1), pages 1257-1289, August.
    2. Tanmoy Das & Vansittee Dilli Rao & Deepankar Choudhury, 2022. "Numerical investigation of the stability of landslide-affected slopes in Kerala, India, under extreme rainfall event," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 114(1), pages 751-785, October.
    3. Bilquis Shah & M. Sultan Bhat & Akhtar Alam & Hilal Ahmad Sheikh & Noureen Ali, 2022. "Developing landslide hazard scenario using the historical events for the Kashmir Himalaya," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 114(3), pages 3763-3785, December.
    4. Langping Li & Hengxing Lan, 2020. "Integration of Spatial Probability and Size in Slope-Unit-Based Landslide Susceptibility Assessment: A Case Study," IJERPH, MDPI, vol. 17(21), pages 1-17, November.
    5. Fan Liu & Yahong Deng & Tianyu Zhang & Faqiao Qian & Nan Yang & Hongquan Teng & Wei Shi & Xue Han, 2024. "Landslide Distribution and Development Characteristics in the Beiluo River Basin," Land, MDPI, vol. 13(7), pages 1-28, July.
    6. Zongji Yang & Bo Pang & Wufan Dong & Dehua Li & Wei Shao, 2023. "Hydromechanical coupling mechanism and an early warning method for paraglacial debris flows triggered by infiltration: Insights from field monitoring in Tianmo gully, Tibetan Plateau," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 117(3), pages 3287-3305, July.
    7. Fanyu Zhang & Jianbing Peng & Xiaowei Huang & Hengxing Lan, 2021. "Hazard assessment and mitigation of non-seismically fatal landslides in China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 106(1), pages 785-804, March.
    8. Yanrong Xu & C. F. Leung & Jian Yu & Wenwu Chen, 2018. "Numerical modelling of hydro-mechanical behaviour of ground settlement due to rising water table in loess," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 94(1), pages 241-260, October.
    9. Yaming Tang & Yinqiang Bi & Zizheng Guo & Zhengguo Li & Wei Feng & Jiayun Wang & Yane Li & Hongna Ma, 2021. "A Novel Method for Obtaining the Loess Structural Index from Computed Tomography Images: A Case Study from the Lvliang Mountains of the Loess Plateau (China)," Land, MDPI, vol. 10(3), pages 1-15, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:86:y:2017:i:3:d:10.1007_s11069-016-2738-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.