IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v15y2017i1p48-d124798.html
   My bibliography  Save this article

The Vulnerability of People to Damaging Hydrogeological Events in the Calabria Region (Southern Italy)

Author

Listed:
  • Olga Petrucci

    (CNR IRPI (Consiglio Nazionale delle Ricerche, Istituto di Ricerca per la Protezione Idrogeologica), via Madonna Alta 126, I-06128 Perugia, Italy)

  • Paola Salvati

    (CNR IRPI (Consiglio Nazionale delle Ricerche, Istituto di Ricerca per la Protezione Idrogeologica), via Madonna Alta 126, I-06128 Perugia, Italy)

  • Luigi Aceto

    (CNR IRPI (Consiglio Nazionale delle Ricerche, Istituto di Ricerca per la Protezione Idrogeologica), via Madonna Alta 126, I-06128 Perugia, Italy)

  • Cinzia Bianchi

    (CNR IRPI (Consiglio Nazionale delle Ricerche, Istituto di Ricerca per la Protezione Idrogeologica), via Madonna Alta 126, I-06128 Perugia, Italy)

  • Angela Aurora Pasqua

    (CNR IRPI (Consiglio Nazionale delle Ricerche, Istituto di Ricerca per la Protezione Idrogeologica), via Madonna Alta 126, I-06128 Perugia, Italy)

  • Mauro Rossi

    (CNR IRPI (Consiglio Nazionale delle Ricerche, Istituto di Ricerca per la Protezione Idrogeologica), via Madonna Alta 126, I-06128 Perugia, Italy)

  • Fausto Guzzetti

    (CNR IRPI (Consiglio Nazionale delle Ricerche, Istituto di Ricerca per la Protezione Idrogeologica), via Madonna Alta 126, I-06128 Perugia, Italy)

Abstract

Background: Damaging Hydrogeological Events (DHEs) are severe weather periods during which floods, landslides, lightning, windstorms, hail or storm surges can harm people. Climate change is expected to increase the frequency/intensity of DHEs and, consequently, the potential harm to people. Method: We investigated the impacts of DHEs on people in Calabria (Italy) over 37 years (1980–2016). Data on 7288 people physically affected by DHEs were gathered from the systematic analysis of regional newspapers and collected in the database named PEOPLE. The damage was codified in three severity levels as follows: fatalities (people who were killed), injured (people who suffered physical harm) and involved (people who were present at the place where an accident occurred but survived and were not harmed). During the study period, we recorded 68 fatalities, 566 injured and 6654 people involved in the events. Results: Males were more frequently killed, injured and involved than females, and females who suffered fatalities were older than males who suffered fatalities, perhaps indicating that younger females tended to be more cautious than same-aged males, while older females showed an intrinsic greater vulnerability. Involved people were younger than injured people and fatalities, suggesting that younger people show greater promptness in reacting to dangerous situations. Floods caused the majority of the fatalities, injured and involved people, followed by landslides. Lightning was the most dangerous phenomenon, and it affected a relatively low number of people, killing 11.63% of them and causing injuries to 37.2%. Fatalities and injuries mainly occurred outdoors, largely along roads. In contrast, people indoors, essentially in public or private buildings, were more frequently involved without suffering harm. Being “dragged by water/mud” and “surrounded by water/mud”, respectively, represented the two extremes of dynamic dangerousness. The dragging effect of rapid-flowing water totally or partially obstructed the attempts of people to save their lives. In contrast, people surrounded by steady water/mud encountered difficulties but ultimately could survive. Conclusions: The study outcomes can be used in informational campaigns to increase risk awareness among both administrators and citizens and to improve community resilience, particularly in promoting self-protective behaviors and avoiding the underestimation of hazardous situations.

Suggested Citation

  • Olga Petrucci & Paola Salvati & Luigi Aceto & Cinzia Bianchi & Angela Aurora Pasqua & Mauro Rossi & Fausto Guzzetti, 2017. "The Vulnerability of People to Damaging Hydrogeological Events in the Calabria Region (Southern Italy)," IJERPH, MDPI, vol. 15(1), pages 1-28, December.
  • Handle: RePEc:gam:jijerp:v:15:y:2017:i:1:p:48-:d:124798
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/15/1/48/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/15/1/48/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dalia Kirschbaum & Robert Adler & Yang Hong & Stephanie Hill & Arthur Lerner-Lam, 2010. "A global landslide catalog for hazard applications: method, results, and limitations," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 52(3), pages 561-575, March.
    2. Abu Ali, 2007. "September 2004 Flood Event in Southwestern Bangladesh: A Study of its Nature, Causes, and Human Perception and Adjustments to a New Hazard," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 40(1), pages 89-111, January.
    3. Wenjuan Zhang & Qing Meng & Ming Ma & Yijun Zhang, 2011. "Lightning casualties and damages in China from 1997 to 2009," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 57(2), pages 465-476, May.
    4. Xiao Fengjin & Xiao Ziniu, 2010. "Characteristics of tropical cyclones in China and their impacts analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 54(3), pages 827-837, September.
    5. Casey Dowling & Paul Santi, 2014. "Debris flows and their toll on human life: a global analysis of debris-flow fatalities from 1950 to 2011," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 71(1), pages 203-227, March.
    6. Jonathan Salerno & Lameck Msalu & Tim Caro & Monique Borgerhoff Mulder, 2012. "Risk of injury and death from lightning in Northern Malawi," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 62(3), pages 853-862, July.
    7. Hiroki Onuma & Kong Joo Shin & Shunsuke Managi, 2017. "Reduction of future disaster damages by learning from disaster experiences," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 87(3), pages 1435-1452, July.
    8. David Petley & Gareth Hearn & Andrew Hart & Nicholas Rosser & Stuart Dunning & Katie Oven & Wishart Mitchell, 2007. "Trends in landslide occurrence in Nepal," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 43(1), pages 23-44, October.
    9. Russell Blong, 2003. "A Review of Damage Intensity Scales," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 29(1), pages 57-76, May.
    10. Pavel Raška & Vilém Zábranský & Jakub Dubišar & Antonín Kadlec & Alena Hrbáčová & Tomáš Strnad, 2014. "Documentary proxies and interdisciplinary research on historic geomorphologic hazards: a discussion of the current state from a central European perspective," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 70(1), pages 705-732, January.
    11. Todd Moore & Richard Dixon, 2012. "Tropical cyclone-tornado casualties," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 61(2), pages 621-634, March.
    12. F. Vinet & D. Lumbroso & S. Defossez & L. Boissier, 2012. "A comparative analysis of the loss of life during two recent floods in France: the sea surge caused by the storm Xynthia and the flash flood in Var," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 61(3), pages 1179-1201, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Olga Petrucci, 2022. "Landslide Fatality Occurrence: A Systematic Review of Research Published between January 2010 and March 2022," Sustainability, MDPI, vol. 14(15), pages 1-18, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fanyu Zhang & Jianbing Peng & Xiaowei Huang & Hengxing Lan, 2021. "Hazard assessment and mitigation of non-seismically fatal landslides in China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 106(1), pages 785-804, March.
    2. Thomas Stanley & Dalia B. Kirschbaum, 2017. "A heuristic approach to global landslide susceptibility mapping," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 87(1), pages 145-164, May.
    3. G. Sakkas & I. Misailidis & N. Sakellariou & V. Kouskouna & G. Kaviris, 2016. "Modeling landslide susceptibility in Greece: a weighted linear combination approach using analytic hierarchical process, validated with spatial and statistical analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 84(3), pages 1873-1904, December.
    4. Pukar Amatya & Corey Scheip & Aline Déprez & Jean-Philippe Malet & Stephen L. Slaughter & Alexander L. Handwerger & Robert Emberson & Dalia Kirschbaum & Julien Jean-Baptiste & Mong-Han Huang & Marin K, 2023. "Learnings from rapid response efforts to remotely detect landslides triggered by the August 2021 Nippes earthquake and Tropical Storm Grace in Haiti," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 118(3), pages 2337-2375, September.
    5. Chelsea Dandridge & Thomas A. Stanley & Dalia B. Kirschbaum & Venkataraman Lakshmi, 2023. "Spatial and Temporal Analysis of Global Landslide Reporting Using a Decade of the Global Landslide Catalog," Sustainability, MDPI, vol. 15(4), pages 1-22, February.
    6. Valentina Acuña & Francisca Roldán & Manuel Tironi & Leila Juzam, 2021. "The Geo-Social Model: A Transdisciplinary Approach to Flow-Type Landslide Analysis and Prevention," Sustainability, MDPI, vol. 13(5), pages 1-40, February.
    7. T. M. Giannaros & K. Lagouvardos & V. Kotroni, 2017. "Performance evaluation of an operational lightning forecasting system in Europe," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 85(1), pages 1-18, January.
    8. Weidong Wang & Jiaying Li & Xia Qu & Zheng Han & Pan Liu, 2019. "Prediction on landslide displacement using a new combination model: a case study of Qinglong landslide in China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 96(3), pages 1121-1139, April.
    9. Xiang-Zhou Xu & Hong-Wu Zhang & Wen-Long Wang & Chao Zhao & Qiao Yan, 2015. "Quantitative monitoring of gravity erosion using a novel 3D surface measuring technique: validation and case study," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 75(2), pages 1927-1939, January.
    10. Hiroki Onuma & Kong Joo Shin & Shunsuke Managi, 2021. "Short-, Medium-, and Long-Term Growth Impacts of Catastrophic and Non-catastrophic Natural Disasters," Economics of Disasters and Climate Change, Springer, vol. 5(1), pages 53-70, April.
    11. Caridad Ballesteros & José A. Jiménez & Christophe Viavattene, 2018. "A multi-component flood risk assessment in the Maresme coast (NW Mediterranean)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 90(1), pages 265-292, January.
    12. Randell, Heather & Jiang, Chengsheng & Liang, Xin-Zhong & Murtugudde, Raghu & Sapkota, Amir, 2021. "Food insecurity and compound environmental shocks in Nepal: Implications for a changing climate," World Development, Elsevier, vol. 145(C).
    13. Derly Gómez & Edwin F. García & Edier Aristizábal, 2023. "Spatial and temporal landslide distributions using global and open landslide databases," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 117(1), pages 25-55, May.
    14. Elias Garcia-Urquia & Kennet Axelsson, 2014. "The use of press data in the development of a database for rainfall-induced landslides in Tegucigalpa, Honduras, 1980–2005," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 73(2), pages 237-258, September.
    15. Elin Spegel & Kristina Ek, 2022. "Valuing the Impacts of Landslides: A Choice Experiment Approach," Economics of Disasters and Climate Change, Springer, vol. 6(1), pages 163-181, March.
    16. Joshua N. Jones & Sarah J. Boulton & Martin Stokes & Georgina L. Bennett & Michael R. Z. Whitworth, 2021. "30-year record of Himalaya mass-wasting reveals landscape perturbations by extreme events," Nature Communications, Nature, vol. 12(1), pages 1-15, December.
    17. George Gaprindashvili & Cees Westen, 2016. "Generation of a national landslide hazard and risk map for the country of Georgia," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 80(1), pages 69-101, January.
    18. Jeevan R. Kulkarni & Sneha S. Kulkarni & Mitali U. Inamdar & Nitin M. Tamhankar & Spandan B. Waghmare & Kiran R. Thombare & Paresh S. Mhetre & Tanuja Khatavkar & Yashodhan Panse & Amey Patwardhan & Yo, 2022. "“Satark”: Landslide Prediction System over Western Ghats of India," Land, MDPI, vol. 11(5), pages 1-23, May.
    19. Pantha, Bhoj Raj & Yatabe, Ryuichi & Bhandary, Netra Prakash, 2010. "GIS-based highway maintenance prioritization model: an integrated approach for highway maintenance in Nepal mountains," Journal of Transport Geography, Elsevier, vol. 18(3), pages 426-433.
    20. Motilal Ghimire & Niroj Timalsina & Wei Zhao, 2024. "A Geographical approach of watershed prioritization in the Himalayas: a case study in the middle mountain district of Nepal," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(9), pages 23527-23560, September.

    More about this item

    Keywords

    floods; landslides; victims;
    All these keywords.

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:15:y:2017:i:1:p:48-:d:124798. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.