IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v114y2022i1d10.1007_s11069-022-05382-z.html
   My bibliography  Save this article

Aftershocks triggering in a conjugate normal fault zone: a case study of the 2020 MW 5.7 Utah earthquake sequence

Author

Listed:
  • Shanshan Liang

    (China Earthquake Networks Center)

  • Guangwei Zhang

    (National Institute of Natural Hazards, MEMC)

  • Zhiguo Xu

    (National Marine Environmental Forecasting Center)

  • Jie Liu

    (China Earthquake Networks Center)

  • Hongwei Li

    (National Marine Environmental Forecasting Center)

  • Jianyu Shi

    (National Marine Environmental Forecasting Center)

  • Yuanze Zhou

    (University of Chinese Academy of Sciences)

Abstract

Rupturing of the primary fault may trigger secondary fault activity in a complex multi-fault system. The mainshock focal mechanism and well-constrained aftershock locations reveal vital information about aftershock migration patterns, the regional tectonic stress field, and the seismogenic process. Aftershock relocations of the events in the Utah Mw5.7 earthquake sequence that occurred on March 18, 2020, indicate that the mainshock ruptured a listric normal fault; this fault is characterized by a shallow concave upward fault surface and a dip that decreases with depth. The aftershocks were largely organized into two clusters. The first small cluster, which is located ~ 8 km east of the mainshock, resides on part of a fault that is steeply dipping to the east; the second larger cluster is spread across multiple conjugate faults. Using local and regional waveforms to estimate the seismic moment tensor solutions, we determined that the Utah MW5.7 mainshock was a shallow crustal normal faulting event. Furthermore, 11 selected aftershocks (MW ≥ 3.3) are also characterized by normal faulting. The nearly EW-oriented extensional stress pattern in the focal area has an orientation that is similar to that of the regional maximum horizontal extensional stress field. Our analysis of the Coulomb stress variations showed that the Utah Mw5.7 earthquake triggered the aftershocks that formed along conjugate normal faults near the West Valley fault zone. These results provide evidence for the triggering hypothesis, wherein subsequent seismic events are caused by static stress changes triggered by large mainshock earthquakes.

Suggested Citation

  • Shanshan Liang & Guangwei Zhang & Zhiguo Xu & Jie Liu & Hongwei Li & Jianyu Shi & Yuanze Zhou, 2022. "Aftershocks triggering in a conjugate normal fault zone: a case study of the 2020 MW 5.7 Utah earthquake sequence," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 114(1), pages 1059-1078, October.
  • Handle: RePEc:spr:nathaz:v:114:y:2022:i:1:d:10.1007_s11069-022-05382-z
    DOI: 10.1007/s11069-022-05382-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-022-05382-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-022-05382-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ross S. Stein, 1999. "The role of stress transfer in earthquake occurrence," Nature, Nature, vol. 402(6762), pages 605-609, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Votsi, I. & Limnios, N. & Tsaklidis, G. & Papadimitriou, E., 2013. "Hidden Markov models revealing the stress field underlying the earthquake generation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(13), pages 2868-2885.
    2. Ferreira, D.S.R. & Ribeiro, J. & Oliveira, P.S.L. & Pimenta, A.R. & Freitas, R.P. & Dutra, R.S. & Papa, A.R.R. & Mendes, J.F.F., 2022. "Spatiotemporal analysis of earthquake occurrence in synthetic and worldwide data," Chaos, Solitons & Fractals, Elsevier, vol. 165(P2).
    3. Irene Votsi & Nikolaos Limnios & George Tsaklidis & Eleftheria Papadimitriou, 2012. "Estimation of the Expected Number of Earthquake Occurrences Based on Semi-Markov Models," Methodology and Computing in Applied Probability, Springer, vol. 14(3), pages 685-703, September.
    4. Xiuhong Zheng & Qihua Zhao & Sheqin Peng & Longke Wu & Yanghao Dou & Kuangyu Chen, 2024. "Analysis of Failure Mechanism of Medium-Steep Bedding Rock Slopes under Seismic Action," Sustainability, MDPI, vol. 16(17), pages 1-21, September.
    5. Michael Hodge & Juliet Biggs & Katsuichiro Goda & Willy Aspinall, 2015. "Assessing infrequent large earthquakes using geomorphology and geodesy: the Malawi Rift," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 76(3), pages 1781-1806, April.
    6. G. Babayev & A. Tibaldi & F. Bonali & F. Kadirov, 2014. "Evaluation of earthquake-induced strain in promoting mud eruptions: the case of Shamakhi–Gobustan–Absheron areas, Azerbaijan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 72(2), pages 789-808, June.
    7. Chengli Liu & Thorne Lay & Rongjiang Wang & Tuncay Taymaz & Zujun Xie & Xiong Xiong & Tahir Serkan Irmak & Metin Kahraman & Ceyhun Erman, 2023. "Complex multi-fault rupture and triggering during the 2023 earthquake doublet in southeastern Türkiye," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    8. B. Rastogi & Sandeep Aggrawal & Nagabhushan Rao & Pallabee Choudhury, 2013. "Triggered/migrated seismicity due to the 2001 M w 7.7 Bhuj earthquake, Western India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 65(2), pages 1085-1107, January.
    9. Huai-zhong Yu & Jia Cheng & Qing-yong Zhu & Yong-ge Wan, 2011. "Critical sensitivity of load/unload response ratio and stress accumulation before large earthquakes: example of the 2008 Mw7.9 Wenchuan earthquake," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 58(1), pages 251-267, July.
    10. Bo Shao & Guiting Hou & Jun Shen, 2021. "Inter-episodes earthquake migration in the Bohai-Zhangjiakou Fault Zone, North China: Insights from numerical modeling," PLOS ONE, Public Library of Science, vol. 16(5), pages 1-16, May.
    11. Muhammad Taufiq Rafie & David P. Sahara & Phil R. Cummins & Wahyu Triyoso & Sri Widiyantoro, 2023. "Stress accumulation and earthquake activity on the Great Sumatran Fault, Indonesia," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(3), pages 3401-3425, April.
    12. Habtemicael, Semere & SenGupta, Indranil, 2014. "Ornstein–Uhlenbeck processes for geophysical data analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 399(C), pages 147-156.
    13. Hongyu Yu & Rebecca M. Harrington & Honn Kao & Yajing Liu & Bei Wang, 2021. "Fluid-injection-induced earthquakes characterized by hybrid-frequency waveforms manifest the transition from aseismic to seismic slip," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    14. Lingbin Meng & Jing Zheng & Ruizhao Yang & Suping Peng & Yuan Sun & Jingyu Xie & Dewei Li, 2023. "Microseismic Monitoring Technology Developments and Prospects in CCUS Injection Engineering," Energies, MDPI, vol. 16(7), pages 1-21, March.
    15. Konstantinos Leptokaropoulos & Eleftheria Papadimitriou & Beata Orlecka-Sikora & Vasileios Karakostas, 2014. "Forecasting seismicity rates in western Turkey as inferred from earthquake catalog and stressing history," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 73(3), pages 1817-1842, September.
    16. Bilal Saif & Mohammad Tahir & Amir Sultan & Muhammad Tahir Iqbal & Talat Iqbal & Muhammad Ali Shah & Samia Gurmani, 2022. "Triggering mechanisms of Gayari avalanche, Pakistan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 112(3), pages 2361-2383, July.
    17. Sanjay K. Prajapati & O. P. Mishra, 2021. "Co-seismic deformation and slip distribution of 5 April 2017 Mashhad, Iran earthquake using InSAR sentinel-1A image: implication to source characterization and future seismogenesis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 105(3), pages 3039-3057, February.

    More about this item

    Keywords

    Utah M W5.7 earthquake; Focal mechanism; Stress field; Conjugate normal fault; Aftershocks triggering;
    All these keywords.

    JEL classification:

    • M - Business Administration and Business Economics; Marketing; Accounting; Personnel Economics

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:114:y:2022:i:1:d:10.1007_s11069-022-05382-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.