IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-53234-0.html
   My bibliography  Save this article

Seismic slip channeling along the East Anatolian Fault illuminates long-term supercycle behavior

Author

Listed:
  • Andrea Billi

    (at Sapienza University of Rome)

  • Fabio Corbi

    (at Sapienza University of Rome)

  • Marco Cuffaro

    (at Sapienza University of Rome)

  • Barbara Orecchio

    (Messina University)

  • Mimmo Palano

    (University of Palermo)

  • Debora Presti

    (Messina University)

  • Cristina Totaro

    (Messina University)

Abstract

The two Mw > 7.5 earthquakes that struck the East Anatolian Fault (EAF), Türkiye, in 2023 caused more slip than expected, indicating that they were potentially part of a supercycle, in which the occurrence probability of a large earthquake is determined by accumulated strain rather than time since the last large earthquake. Here, we show two potential supercycles along the EAF, analyzing earthquakes from the last two millennia. Within each supercycle, seismic ruptures originated in the northeast and progressively spread southwestward with an increasing number of earthquakes until a new supercycle began with another large earthquake in the northeast. To understand the supercycle behavior, we analyze the aftershock sequences of the four most recent Mw≥6.1 mainshocks (2010–2023). This series of earthquakes progressed southwestward, characterized by an increasing diversity of focal mechanisms and a heightened dispersion of epicenters across a branched seismotectonic environment. Earthquakes in the northeast exhibit spatial and kinematic channeling along the master fault surface, effectively transferring slip southwestward and there potentially triggering dispersed and heterogeneous earthquakes. This spatiotemporal pattern seems connected with varying levels of a presumably-innate property of fault sections or regions, ruling the process of seismic slip channeling, which could also explain the behavior of long-term supercycles.

Suggested Citation

  • Andrea Billi & Fabio Corbi & Marco Cuffaro & Barbara Orecchio & Mimmo Palano & Debora Presti & Cristina Totaro, 2024. "Seismic slip channeling along the East Anatolian Fault illuminates long-term supercycle behavior," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-53234-0
    DOI: 10.1038/s41467-024-53234-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-53234-0
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-53234-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. K. R. Felzer & E. E. Brodsky, 2006. "Decay of aftershock density with distance indicates triggering by dynamic stress," Nature, Nature, vol. 441(7094), pages 735-738, June.
    2. Zoë K. Mildon & Gerald P. Roberts & Joanna P. Faure Walker & Joakim Beck & Ioannis Papanikolaou & Alessandro M. Michetti & Shinji Toda & Francesco Iezzi & Lucy Campbell & Kenneth J. W. McCaffrey & Ric, 2022. "Surface faulting earthquake clustering controlled by fault and shear-zone interactions," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    3. C. Collettini & M. R. Barchi & N. Paola & F. Trippetta & E. Tinti, 2022. "Rock and fault rheology explain differences between on fault and distributed seismicity," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    4. Ross S. Stein, 1999. "The role of stress transfer in earthquake occurrence," Nature, Nature, vol. 402(6762), pages 605-609, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Votsi, I. & Limnios, N. & Tsaklidis, G. & Papadimitriou, E., 2013. "Hidden Markov models revealing the stress field underlying the earthquake generation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(13), pages 2868-2885.
    2. Ferreira, D.S.R. & Ribeiro, J. & Oliveira, P.S.L. & Pimenta, A.R. & Freitas, R.P. & Dutra, R.S. & Papa, A.R.R. & Mendes, J.F.F., 2022. "Spatiotemporal analysis of earthquake occurrence in synthetic and worldwide data," Chaos, Solitons & Fractals, Elsevier, vol. 165(P2).
    3. Habtemicael, Semere & SenGupta, Indranil, 2014. "Ornstein–Uhlenbeck processes for geophysical data analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 399(C), pages 147-156.
    4. Hongyu Yu & Rebecca M. Harrington & Honn Kao & Yajing Liu & Bei Wang, 2021. "Fluid-injection-induced earthquakes characterized by hybrid-frequency waveforms manifest the transition from aseismic to seismic slip," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    5. Irene Votsi & Nikolaos Limnios & George Tsaklidis & Eleftheria Papadimitriou, 2012. "Estimation of the Expected Number of Earthquake Occurrences Based on Semi-Markov Models," Methodology and Computing in Applied Probability, Springer, vol. 14(3), pages 685-703, September.
    6. Juan A. Serrano & Edén Bojórquez & Juan Bojórquez & Alfredo Reyes-Salazar & Ignacio Torres & Jorge Ruiz-García & Antonio Formisano & Eduardo Fernández & Herian Leyva & Mario D. Llanes-Tizoc, 2023. "Ratio of Hysteretic and Input Energy Spectra for Nonlinear Structures under Seismic Sequences," Sustainability, MDPI, vol. 15(6), pages 1-30, March.
    7. Lingbin Meng & Jing Zheng & Ruizhao Yang & Suping Peng & Yuan Sun & Jingyu Xie & Dewei Li, 2023. "Microseismic Monitoring Technology Developments and Prospects in CCUS Injection Engineering," Energies, MDPI, vol. 16(7), pages 1-21, March.
    8. Xiuhong Zheng & Qihua Zhao & Sheqin Peng & Longke Wu & Yanghao Dou & Kuangyu Chen, 2024. "Analysis of Failure Mechanism of Medium-Steep Bedding Rock Slopes under Seismic Action," Sustainability, MDPI, vol. 16(17), pages 1-21, September.
    9. Zhou, Yu & Leung, Yee & Chan, Lung Sang, 2017. "Oscillatory tendency of interevent direction in earthquake sequences," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 478(C), pages 120-130.
    10. Blandine Gardonio & David Marsan & Thomas Bodin & Anne Socquet & Stéphanie Durand & Mathilde Radiguet & Yanick Ricard & Alexandre Schubnel, 2024. "Change of deep subduction seismicity after a large megathrust earthquake," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    11. Michael Hodge & Juliet Biggs & Katsuichiro Goda & Willy Aspinall, 2015. "Assessing infrequent large earthquakes using geomorphology and geodesy: the Malawi Rift," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 76(3), pages 1781-1806, April.
    12. Shanshan Liang & Guangwei Zhang & Zhiguo Xu & Jie Liu & Hongwei Li & Jianyu Shi & Yuanze Zhou, 2022. "Aftershocks triggering in a conjugate normal fault zone: a case study of the 2020 MW 5.7 Utah earthquake sequence," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 114(1), pages 1059-1078, October.
    13. G. Babayev & A. Tibaldi & F. Bonali & F. Kadirov, 2014. "Evaluation of earthquake-induced strain in promoting mud eruptions: the case of Shamakhi–Gobustan–Absheron areas, Azerbaijan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 72(2), pages 789-808, June.
    14. Chengli Liu & Thorne Lay & Rongjiang Wang & Tuncay Taymaz & Zujun Xie & Xiong Xiong & Tahir Serkan Irmak & Metin Kahraman & Ceyhun Erman, 2023. "Complex multi-fault rupture and triggering during the 2023 earthquake doublet in southeastern Türkiye," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    15. Konstantinos Leptokaropoulos & Eleftheria Papadimitriou & Beata Orlecka-Sikora & Vasileios Karakostas, 2014. "Forecasting seismicity rates in western Turkey as inferred from earthquake catalog and stressing history," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 73(3), pages 1817-1842, September.
    16. Telesca, Luciano & Golay, Jean & Kanevski, Mikhail, 2015. "Morisita-based space-clustering analysis of Swiss seismicity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 419(C), pages 40-47.
    17. B. Rastogi & Sandeep Aggrawal & Nagabhushan Rao & Pallabee Choudhury, 2013. "Triggered/migrated seismicity due to the 2001 M w 7.7 Bhuj earthquake, Western India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 65(2), pages 1085-1107, January.
    18. Huai-zhong Yu & Jia Cheng & Qing-yong Zhu & Yong-ge Wan, 2011. "Critical sensitivity of load/unload response ratio and stress accumulation before large earthquakes: example of the 2008 Mw7.9 Wenchuan earthquake," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 58(1), pages 251-267, July.
    19. Q. Xiong & M. R. Brudzinski & D. Gossett & Q. Lin & J. C. Hampton, 2023. "Seismic magnitude clustering is prevalent in field and laboratory catalogs," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    20. Holliday, James R. & Turcotte, Donald L. & Rundle, John B., 2008. "Self-similar branching of aftershock sequences," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(4), pages 933-943.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-53234-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.