IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v58y2011i1p251-267.html
   My bibliography  Save this article

Critical sensitivity of load/unload response ratio and stress accumulation before large earthquakes: example of the 2008 Mw7.9 Wenchuan earthquake

Author

Listed:
  • Huai-zhong Yu
  • Jia Cheng
  • Qing-yong Zhu
  • Yong-ge Wan

Abstract

The Load/Unload Response Ratio (LURR) method is often defined as the ratio between Benioff strains released during the time periods of loading and unloading, corresponding to earth tide induced Coulomb Failure Stress change on optimally oriented faults. According to the method, anomalous increase in the time series of LURR usually occurs prior to occurrence of a large earthquake. Previous studies have indicated that the stress field that existed before a large earthquake has strong influence on the evaluation of LURR. In order to augment the sensitivity of LURR in measuring the criticality of stress accumulation before an earthquake, we replace the circular region usually adopted in LURR practice with an area within which the tectonic stress change would mostly affect the Coulomb stress on a potential seismogenic fault of a future event. Coulomb stress change before the hypothetical earthquake is calculated based on a simple back-slip dislocation model of the event. Retrospective test of this new algorithm on the 2008 Mw7.9 Wenchuan earthquake shows remarkable enhancement of the LURR precursory anomaly. To illustrate the variation of LURR time series associated with our choice of identified areas with increased Coulomb stress before the earthquake, we calculate the spatial distributions of LURR within a circular region of 700 km radius centered at epicenter of the event. Comparing the spatial LURR distributions of different periods, the change of LURR within the Coulomb stress increase areas looks more prominent than the others: it remains at a low level for most of the time and markedly increases few years before the quake. This result further shows the validity of the Coulomb stress algorithm. Unlike circular regions, areas of increased Coulomb stress with anomalously increased LURR values before a large earthquake could provide a relatively more precise estimation of the criticality of the ensuing event. Copyright Springer Science+Business Media B.V. 2011

Suggested Citation

  • Huai-zhong Yu & Jia Cheng & Qing-yong Zhu & Yong-ge Wan, 2011. "Critical sensitivity of load/unload response ratio and stress accumulation before large earthquakes: example of the 2008 Mw7.9 Wenchuan earthquake," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 58(1), pages 251-267, July.
  • Handle: RePEc:spr:nathaz:v:58:y:2011:i:1:p:251-267
    DOI: 10.1007/s11069-010-9664-9
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11069-010-9664-9
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11069-010-9664-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Aurélia Hubert-Ferrari & Aykut Barka & Eric Jacques & Süleyman S. Nalbant & Bertrand Meyer & Rolando Armijo & Paul Tapponnier & Geoffrey C. P. King, 2000. "Seismic hazard in the Marmara Sea region following the 17 August 1999 Izmit earthquake," Nature, Nature, vol. 404(6775), pages 269-273, March.
    2. Tom Parsons & Chen Ji & Eric Kirby, 2008. "Stress changes from the 2008 Wenchuan earthquake and increased hazard in the Sichuan basin," Nature, Nature, vol. 454(7203), pages 509-510, July.
    3. Ross S. Stein, 1999. "The role of stress transfer in earthquake occurrence," Nature, Nature, vol. 402(6762), pages 605-609, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Votsi, I. & Limnios, N. & Tsaklidis, G. & Papadimitriou, E., 2013. "Hidden Markov models revealing the stress field underlying the earthquake generation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(13), pages 2868-2885.
    2. Ferreira, D.S.R. & Ribeiro, J. & Oliveira, P.S.L. & Pimenta, A.R. & Freitas, R.P. & Dutra, R.S. & Papa, A.R.R. & Mendes, J.F.F., 2022. "Spatiotemporal analysis of earthquake occurrence in synthetic and worldwide data," Chaos, Solitons & Fractals, Elsevier, vol. 165(P2).
    3. Andrea Billi & Fabio Corbi & Marco Cuffaro & Barbara Orecchio & Mimmo Palano & Debora Presti & Cristina Totaro, 2024. "Seismic slip channeling along the East Anatolian Fault illuminates long-term supercycle behavior," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    4. Irene Votsi & Nikolaos Limnios & George Tsaklidis & Eleftheria Papadimitriou, 2012. "Estimation of the Expected Number of Earthquake Occurrences Based on Semi-Markov Models," Methodology and Computing in Applied Probability, Springer, vol. 14(3), pages 685-703, September.
    5. Xiuhong Zheng & Qihua Zhao & Sheqin Peng & Longke Wu & Yanghao Dou & Kuangyu Chen, 2024. "Analysis of Failure Mechanism of Medium-Steep Bedding Rock Slopes under Seismic Action," Sustainability, MDPI, vol. 16(17), pages 1-21, September.
    6. Michael Hodge & Juliet Biggs & Katsuichiro Goda & Willy Aspinall, 2015. "Assessing infrequent large earthquakes using geomorphology and geodesy: the Malawi Rift," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 76(3), pages 1781-1806, April.
    7. Shanshan Liang & Guangwei Zhang & Zhiguo Xu & Jie Liu & Hongwei Li & Jianyu Shi & Yuanze Zhou, 2022. "Aftershocks triggering in a conjugate normal fault zone: a case study of the 2020 MW 5.7 Utah earthquake sequence," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 114(1), pages 1059-1078, October.
    8. G. Babayev & A. Tibaldi & F. Bonali & F. Kadirov, 2014. "Evaluation of earthquake-induced strain in promoting mud eruptions: the case of Shamakhi–Gobustan–Absheron areas, Azerbaijan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 72(2), pages 789-808, June.
    9. Chengli Liu & Thorne Lay & Rongjiang Wang & Tuncay Taymaz & Zujun Xie & Xiong Xiong & Tahir Serkan Irmak & Metin Kahraman & Ceyhun Erman, 2023. "Complex multi-fault rupture and triggering during the 2023 earthquake doublet in southeastern Türkiye," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    10. B. Rastogi & Sandeep Aggrawal & Nagabhushan Rao & Pallabee Choudhury, 2013. "Triggered/migrated seismicity due to the 2001 M w 7.7 Bhuj earthquake, Western India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 65(2), pages 1085-1107, January.
    11. Wenzhe Tang & Jing Li & Zhen Lei & Enzhi Wang & Wenxin Shen, 2015. "Creating social–physical resilience to natural disasters: lessons from the Wenchuan earthquake," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 79(2), pages 1111-1132, November.
    12. Bo Shao & Guiting Hou & Jun Shen, 2021. "Inter-episodes earthquake migration in the Bohai-Zhangjiakou Fault Zone, North China: Insights from numerical modeling," PLOS ONE, Public Library of Science, vol. 16(5), pages 1-16, May.
    13. Muhammad Taufiq Rafie & David P. Sahara & Phil R. Cummins & Wahyu Triyoso & Sri Widiyantoro, 2023. "Stress accumulation and earthquake activity on the Great Sumatran Fault, Indonesia," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(3), pages 3401-3425, April.
    14. Cailin Wang & Jidong Wu & Xin He & Mengqi Ye & Wenhui Liu & Rumei Tang, 2018. "Emerging Trends and New Developments in Disaster Research after the 2008 Wenchuan Earthquake," IJERPH, MDPI, vol. 16(1), pages 1-19, December.
    15. N. Zhang & H. Huang, 2018. "Assessment of world disaster severity processed by Gaussian blur based on large historical data: casualties as an evaluating indicator," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 92(1), pages 173-187, May.
    16. Habtemicael, Semere & SenGupta, Indranil, 2014. "Ornstein–Uhlenbeck processes for geophysical data analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 399(C), pages 147-156.
    17. Richard Rothaus & Eduard Reinhardt & Jay Noller, 2004. "Regional Considerations of Coastline Change, Tsunami Damage and Recovery along the Southern Coast of the Bay of Izmit (The Kocaeli (Turkey) Earthquake of 17 August 1999)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 31(1), pages 233-252, January.
    18. Hongyu Yu & Rebecca M. Harrington & Honn Kao & Yajing Liu & Bei Wang, 2021. "Fluid-injection-induced earthquakes characterized by hybrid-frequency waveforms manifest the transition from aseismic to seismic slip," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    19. Lingbin Meng & Jing Zheng & Ruizhao Yang & Suping Peng & Yuan Sun & Jingyu Xie & Dewei Li, 2023. "Microseismic Monitoring Technology Developments and Prospects in CCUS Injection Engineering," Energies, MDPI, vol. 16(7), pages 1-21, March.
    20. Posadas, A. & Morales, J. & Ibañez, J.M. & Posadas-Garzon, A., 2021. "Shaking earth: Non-linear seismic processes and the second law of thermodynamics: A case study from Canterbury (New Zealand) earthquakes," Chaos, Solitons & Fractals, Elsevier, vol. 151(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:58:y:2011:i:1:p:251-267. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.