IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v112y2022i3d10.1007_s11069-022-05269-z.html
   My bibliography  Save this article

Triggering mechanisms of Gayari avalanche, Pakistan

Author

Listed:
  • Bilal Saif

    (Centre for Earthquake Studies)

  • Mohammad Tahir

    (Centre for Earthquake Studies)

  • Amir Sultan

    (Centre for Earthquake Studies)

  • Muhammad Tahir Iqbal

    (Centre for Earthquake Studies)

  • Talat Iqbal

    (Centre for Earthquake Studies)

  • Muhammad Ali Shah

    (Centre for Earthquake Studies)

  • Samia Gurmani

    (Centre for Earthquake Studies)

Abstract

A massive snow avalanche occurred on April 2012 at Gayari, located in NE part of Pakistan, close to India and China Border. The catastrophic avalanche killed nearly 148 people, majority of which were Pakistan army personnel destroying army base camp. To mitigate its future hazard, different triggering mechanisms have been investigated in this study. We contemplate that the avalanche was triggered due to snow pack existence on favorable slope in combination with different meteorological conditions and anomalous ground vibration. The avalanche occurrence clock was advanced by two earthquakes: M 4.1 at a distance $$\sim$$ ∼ 125 km that occurred about 21 h before and another comparatively larger (M 5.6) earthquake that occurred comparatively at larger distance ( $$\sim$$ ∼ 370 km) and longer time ( $$\sim$$ ∼ 25 days) before which have significantly changed the loading conditions. The latter event (M 5.6) has imparted maximum peak dynamic stress and cumulative seismic moment a month before the avalanche. Interestingly the avalanche occurred within the seismic coda of M 2.8 earthquake from Hindu Kush region, located at 560 km distance. Although the size and its expected impact on avalanche might be minor, its role in instantaneous triggering cannot be ruled out. Even smaller events at larger distance have been reported to cause snow avalanches in same environments. The presence of cracks within the avalanche was further weaken by persistence of extremely low temperature (lowest in the past decade), causing high precipitation rate along with altering the mechanical properties of the weak layer within the snow pack. Robust wind pressure pattern highest and lowest in March and April 2012, respectively, might be responsible for abrupt changes in loading conditions.

Suggested Citation

  • Bilal Saif & Mohammad Tahir & Amir Sultan & Muhammad Tahir Iqbal & Talat Iqbal & Muhammad Ali Shah & Samia Gurmani, 2022. "Triggering mechanisms of Gayari avalanche, Pakistan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 112(3), pages 2361-2383, July.
  • Handle: RePEc:spr:nathaz:v:112:y:2022:i:3:d:10.1007_s11069-022-05269-z
    DOI: 10.1007/s11069-022-05269-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-022-05269-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-022-05269-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Joan Gomberg & Paul Johnson, 2005. "Dynamic triggering of earthquakes," Nature, Nature, vol. 437(7060), pages 830-830, October.
    2. Ross S. Stein, 1999. "The role of stress transfer in earthquake occurrence," Nature, Nature, vol. 402(6762), pages 605-609, December.
    3. Martin Laternser & Martin Schneebeli, 2002. "Temporal Trend and Spatial Distribution of Avalanche Activity during the Last 50 Years in Switzerland," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 27(3), pages 201-230, November.
    4. K. Kishimura & K. Izumi, 1997. "Seismic Signals Induced by Snow Avalanche Flow," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 15(1), pages 89-100, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Votsi, I. & Limnios, N. & Tsaklidis, G. & Papadimitriou, E., 2013. "Hidden Markov models revealing the stress field underlying the earthquake generation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(13), pages 2868-2885.
    2. Ferreira, D.S.R. & Ribeiro, J. & Oliveira, P.S.L. & Pimenta, A.R. & Freitas, R.P. & Dutra, R.S. & Papa, A.R.R. & Mendes, J.F.F., 2022. "Spatiotemporal analysis of earthquake occurrence in synthetic and worldwide data," Chaos, Solitons & Fractals, Elsevier, vol. 165(P2).
    3. Peter Höller, 2007. "Avalanche hazards and mitigation in Austria: a review," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 43(1), pages 81-101, October.
    4. Irene Votsi & Nikolaos Limnios & George Tsaklidis & Eleftheria Papadimitriou, 2012. "Estimation of the Expected Number of Earthquake Occurrences Based on Semi-Markov Models," Methodology and Computing in Applied Probability, Springer, vol. 14(3), pages 685-703, September.
    5. Xiuhong Zheng & Qihua Zhao & Sheqin Peng & Longke Wu & Yanghao Dou & Kuangyu Chen, 2024. "Analysis of Failure Mechanism of Medium-Steep Bedding Rock Slopes under Seismic Action," Sustainability, MDPI, vol. 16(17), pages 1-21, September.
    6. Michael Hodge & Juliet Biggs & Katsuichiro Goda & Willy Aspinall, 2015. "Assessing infrequent large earthquakes using geomorphology and geodesy: the Malawi Rift," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 76(3), pages 1781-1806, April.
    7. Shanshan Liang & Guangwei Zhang & Zhiguo Xu & Jie Liu & Hongwei Li & Jianyu Shi & Yuanze Zhou, 2022. "Aftershocks triggering in a conjugate normal fault zone: a case study of the 2020 MW 5.7 Utah earthquake sequence," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 114(1), pages 1059-1078, October.
    8. G. Babayev & A. Tibaldi & F. Bonali & F. Kadirov, 2014. "Evaluation of earthquake-induced strain in promoting mud eruptions: the case of Shamakhi–Gobustan–Absheron areas, Azerbaijan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 72(2), pages 789-808, June.
    9. Sven Fuchs & Margreth Keiler & Sergey Sokratov & Alexander Shnyparkov, 2013. "Spatiotemporal dynamics: the need for an innovative approach in mountain hazard risk management," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 68(3), pages 1217-1241, September.
    10. Chengli Liu & Thorne Lay & Rongjiang Wang & Tuncay Taymaz & Zujun Xie & Xiong Xiong & Tahir Serkan Irmak & Metin Kahraman & Ceyhun Erman, 2023. "Complex multi-fault rupture and triggering during the 2023 earthquake doublet in southeastern Türkiye," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    11. B. Rastogi & Sandeep Aggrawal & Nagabhushan Rao & Pallabee Choudhury, 2013. "Triggered/migrated seismicity due to the 2001 M w 7.7 Bhuj earthquake, Western India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 65(2), pages 1085-1107, January.
    12. Huai-zhong Yu & Jia Cheng & Qing-yong Zhu & Yong-ge Wan, 2011. "Critical sensitivity of load/unload response ratio and stress accumulation before large earthquakes: example of the 2008 Mw7.9 Wenchuan earthquake," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 58(1), pages 251-267, July.
    13. Flaviu Meseșan & Ionela G. Gavrilă & Olimpiu T. Pop, 2018. "Calculating snow-avalanche return period from tree-ring data," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 94(3), pages 1081-1098, December.
    14. Bo Shao & Guiting Hou & Jun Shen, 2021. "Inter-episodes earthquake migration in the Bohai-Zhangjiakou Fault Zone, North China: Insights from numerical modeling," PLOS ONE, Public Library of Science, vol. 16(5), pages 1-16, May.
    15. Muhammad Taufiq Rafie & David P. Sahara & Phil R. Cummins & Wahyu Triyoso & Sri Widiyantoro, 2023. "Stress accumulation and earthquake activity on the Great Sumatran Fault, Indonesia," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(3), pages 3401-3425, April.
    16. Habtemicael, Semere & SenGupta, Indranil, 2014. "Ornstein–Uhlenbeck processes for geophysical data analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 399(C), pages 147-156.
    17. Hongyu Yu & Rebecca M. Harrington & Honn Kao & Yajing Liu & Bei Wang, 2021. "Fluid-injection-induced earthquakes characterized by hybrid-frequency waveforms manifest the transition from aseismic to seismic slip," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    18. Leighton M. Watson & Brad Carpenter & Kevin Thompson & Jeffrey B. Johnson, 2022. "Using local infrasound arrays to detect plunging snow avalanches along the Milford Road, New Zealand (Aotearoa)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 111(1), pages 949-972, March.
    19. Lingbin Meng & Jing Zheng & Ruizhao Yang & Suping Peng & Yuan Sun & Jingyu Xie & Dewei Li, 2023. "Microseismic Monitoring Technology Developments and Prospects in CCUS Injection Engineering," Energies, MDPI, vol. 16(7), pages 1-21, March.
    20. Daniel Germain & Louise Filion & Bernard Hétu, 2009. "Snow avalanche regime and climatic conditions in the Chic-Choc Range, eastern Canada," Climatic Change, Springer, vol. 92(1), pages 141-167, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:112:y:2022:i:3:d:10.1007_s11069-022-05269-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.