IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v165y2022ip2s0960077922009936.html
   My bibliography  Save this article

Spatiotemporal analysis of earthquake occurrence in synthetic and worldwide data

Author

Listed:
  • Ferreira, D.S.R.
  • Ribeiro, J.
  • Oliveira, P.S.L.
  • Pimenta, A.R.
  • Freitas, R.P.
  • Dutra, R.S.
  • Papa, A.R.R.
  • Mendes, J.F.F.

Abstract

The present work presents spatiotemporal analyses of distributions between successive earthquakes. This study comprehends data produced by a modified version of the Olami–Feder–Christensen model with a small-world topology and actual worldwide earthquakes from 2000 to 2019. The distributions were studied from the nonextensive statistical mechanic’s viewpoint, which was shown to be a suitable approach since q-exponential functions produced better fittings to data than pure power laws. Our results show that, by applying scaling relationships, the probability distributions have data collapses in all cases. It reinforces the conception of a critical behavior in the seismological phenomenon and that there is no differentiation between the spatiotemporal statistical features of earthquakes, whether small or large in size or magnitude. In addition, the presence of q-exponential distributions and the ability of a small-world-like OFC model to reproduce spatiotemporal features of real worldwide earthquakes indicate self-organized criticality and long-range spatiotemporal correlations between earthquakes.

Suggested Citation

  • Ferreira, D.S.R. & Ribeiro, J. & Oliveira, P.S.L. & Pimenta, A.R. & Freitas, R.P. & Dutra, R.S. & Papa, A.R.R. & Mendes, J.F.F., 2022. "Spatiotemporal analysis of earthquake occurrence in synthetic and worldwide data," Chaos, Solitons & Fractals, Elsevier, vol. 165(P2).
  • Handle: RePEc:eee:chsofr:v:165:y:2022:i:p2:s0960077922009936
    DOI: 10.1016/j.chaos.2022.112814
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077922009936
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2022.112814?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ferreira, Douglas S.R. & Papa, Andrés R.R. & Menezes, Ronaldo, 2014. "Small world picture of worldwide seismic events," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 408(C), pages 170-180.
    2. Balasis, Georgios & Daglis, Ioannis A. & Anastasiadis, Anastasios & Papadimitriou, Constantinos & Mandea, Mioara & Eftaxias, Konstantinos, 2011. "Universality in solar flare, magnetic storm and earthquake dynamics using Tsallis statistical mechanics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(2), pages 341-346.
    3. Abe, Sumiyoshi & Suzuki, Norikazu, 2004. "Small-world structure of earthquake network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 337(1), pages 357-362.
    4. Duncan J. Watts & Steven H. Strogatz, 1998. "Collective dynamics of ‘small-world’ networks," Nature, Nature, vol. 393(6684), pages 440-442, June.
    5. Mariani, Maria C. & Bhuiyan, Md Al Masum & Tweneboah, Osei K. & Gonzalez-Huizar, Hector, 2020. "Long memory effects and forecasting of earthquake and volcano seismic data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 559(C).
    6. Corral, Álvaro, 2004. "Universal local versus unified global scaling laws in the statistics of seismicity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 340(4), pages 590-597.
    7. Scherrer, T.M. & França, G.S. & Silva, R. & de Freitas, D.B. & Vilar, C.S., 2015. "Nonextensivity at the Circum-Pacific subduction zones—Preliminary studies," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 426(C), pages 63-71.
    8. Vilar, C.S. & França, G.S. & Silva, R. & Alcaniz, J.S., 2007. "Nonextensivity in geological faults?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 377(1), pages 285-290.
    9. Vallianatos, Filippos, 2018. "A non extensive view of electrical resistivity spatial distribution estimated using inverted Transient Electromagnetic responses in a karstified formation (Keritis basin, Crete, Greece)," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 505(C), pages 171-178.
    10. Darooneh, Amir H. & Dadashinia, Cyruse, 2008. "Analysis of the spatial and temporal distributions between successive earthquakes: Nonextensive statistical mechanics viewpoint," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(14), pages 3647-3654.
    11. Abe, Sumiyoshi & Suzuki, Norikazu, 2005. "Scale-free statistics of time interval between successive earthquakes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 350(2), pages 588-596.
    12. Barbosa, Cleiton S. & Ferreira, Douglas S.R. & do Espírito Santo, Marco A. & Papa, Andrés R.R., 2013. "Statistical analysis of geomagnetic field reversals and their consequences," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(24), pages 6554-6560.
    13. Antonopoulos, Chris G. & Michas, George & Vallianatos, Filippos & Bountis, Tassos, 2014. "Evidence of q-exponential statistics in Greek seismicity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 409(C), pages 71-77.
    14. Ferreira, Douglas S.R. & Ribeiro, Jennifer & Oliveira, Paulo S.L. & Pimenta, André R. & Freitas, Renato P. & Papa, Andrés R.R., 2020. "Long-range correlation studies in deep earthquakes global series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 560(C).
    15. Ross S. Stein, 1999. "The role of stress transfer in earthquake occurrence," Nature, Nature, vol. 402(6762), pages 605-609, December.
    16. Hasumi, Tomohiro, 2009. "Hypocenter interval statistics between successive earthquakes in the two-dimensional Burridge–Knopoff model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(4), pages 477-482.
    17. F. Caruso & V. Latora & A. Pluchino & A. Rapisarda & B. Tadić, 2006. "Olami-Feder-Christensen model on different networks," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 50(1), pages 243-247, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ferreira, Douglas S.R. & Ribeiro, Jennifer & Oliveira, Paulo S.L. & Pimenta, André R. & Freitas, Renato P. & Papa, Andrés R.R., 2020. "Long-range correlation studies in deep earthquakes global series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 560(C).
    2. Hasumi, Tomohiro, 2009. "Hypocenter interval statistics between successive earthquakes in the two-dimensional Burridge–Knopoff model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(4), pages 477-482.
    3. Chochlaki, Kalliopi & Vallianatos, Filippos & Michas, Georgios, 2018. "Global regionalized seismicity in view of Non-Extensive Statistical Physics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 493(C), pages 276-285.
    4. Ferreira, Douglas S.R. & Papa, Andrés R.R. & Menezes, Ronaldo, 2014. "Small world picture of worldwide seismic events," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 408(C), pages 170-180.
    5. Scherrer, T.M. & França, G.S. & Silva, R. & de Freitas, D.B. & Vilar, C.S., 2015. "Nonextensivity at the Circum-Pacific subduction zones—Preliminary studies," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 426(C), pages 63-71.
    6. He, Xuan & Wang, Luyang & Zhu, Hongbo & Liu, Zheng, 2021. "Statistical analysis of complex weighted network for seismicity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 563(C).
    7. Zhang, Gui-Qing & Baró, Jordi & Cheng, Fang-Yin & Huang, He & Wang, Lin, 2019. "Avalanche dynamics of a generalized earthquake model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 1463-1471.
    8. Papadakis, Giorgos & Vallianatos, Filippos & Sammonds, Peter, 2016. "Non-extensive statistical physics applied to heat flow and the earthquake frequency–magnitude distribution in Greece," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 456(C), pages 135-144.
    9. Pană, Gabriel Tiberiu & Nicolin-Żaczek, Alexandru, 2023. "Motifs in earthquake networks: Romania, Italy, United States of America, and Japan," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 632(P1).
    10. Potirakis, Stelios M. & Zitis, Pavlos I. & Eftaxias, Konstantinos, 2013. "Dynamical analogy between economical crisis and earthquake dynamics within the nonextensive statistical mechanics framework," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(13), pages 2940-2954.
    11. Răzvan-Cornel Sfetcu & Vasile Preda, 2023. "Fractal Divergences of Generalized Jacobi Polynomials," Mathematics, MDPI, vol. 11(16), pages 1-12, August.
    12. Ioannis, Koutalonis & Filippos, Vallianatos, 2020. "Observational evidence of non-extensive behavior of seismic coda waves," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 550(C).
    13. Hoyos, Isabel & Rodríguez, Boris Anghelo, 2020. "Drawing the complexity of Colombian climate from non-extensive extreme behavior," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 548(C).
    14. Votsi, I. & Limnios, N. & Tsaklidis, G. & Papadimitriou, E., 2013. "Hidden Markov models revealing the stress field underlying the earthquake generation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(13), pages 2868-2885.
    15. Samrachana Adhikari & Beau Dabbs, 2018. "Social Network Analysis in R: A Software Review," Journal of Educational and Behavioral Statistics, , vol. 43(2), pages 225-253, April.
    16. Wang, Xiaojie & Slamu, Wushour & Guo, Wenqiang & Wang, Sixiu & Ren, Yan, 2022. "A novel semi local measure of identifying influential nodes in complex networks," Chaos, Solitons & Fractals, Elsevier, vol. 158(C).
    17. Lin, Dan & Wu, Jiajing & Xuan, Qi & Tse, Chi K., 2022. "Ethereum transaction tracking: Inferring evolution of transaction networks via link prediction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 600(C).
    18. Qinghu Liao & Wenwen Dong & Boxin Zhao, 2023. "A New Strategy to Solve “the Tragedy of the Commons” in Sustainable Grassland Ecological Compensation: Experience from Inner Mongolia, China," Sustainability, MDPI, vol. 15(12), pages 1-24, June.
    19. He, Xuan & Zhao, Hai & Cai, Wei & Liu, Zheng & Si, Shuai-Zong, 2014. "Earthquake networks based on space–time influence domain," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 407(C), pages 175-184.
    20. Jianhong Chen & Hongcai Ma & Shan Yang, 2023. "SEIOR Rumor Propagation Model Considering Hesitating Mechanism and Different Rumor-Refuting Ways in Complex Networks," Mathematics, MDPI, vol. 11(2), pages 1-22, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:165:y:2022:i:p2:s0960077922009936. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.