IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i17p7729-d1472068.html
   My bibliography  Save this article

Analysis of Failure Mechanism of Medium-Steep Bedding Rock Slopes under Seismic Action

Author

Listed:
  • Xiuhong Zheng

    (State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu 610059, China)

  • Qihua Zhao

    (State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu 610059, China)

  • Sheqin Peng

    (State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu 610059, China)

  • Longke Wu

    (Guangxi Communications Design Group Co., Ltd., Nanning 530025, China)

  • Yanghao Dou

    (State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu 610059, China)

  • Kuangyu Chen

    (State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu 610059, China)

Abstract

Medium-steep bedding rock slopes (MBRSs) are generally considered relatively stable, because the dip angle of the rock layers (45–55°) is larger than the slope angle (40–45°). However, the stability of MBRSs was significantly impacted during the 1933 Diexi earthquake, leading to slope instability. Field investigations revealed that no continuous sliding surface was recognized in the failure slopes. Instead, the source areas of landslides present a “reverse steps” feature, where the step surfaces are perpendicular to the bedding surface, and their normal directions point towards the crest of the slopes. These orientations of “reverse steps” differ significantly from those of steps formed under static conditions, which makes it difficult to explain the phenomenon using traditional failure mechanism of the slope. Therefore, a large-scale shaking table test was conducted to replicate the deformation and failure processes of MBRSs under seismic action. The test revealed the elevation amplification effect, where the amplification factors of the acceleration increased with increasing elevation. As the amplitude of the input seismic wave increased, the acceleration amplification factor initially rose and subsequently decreased with the increase in the shear strain of the rock mass. The dynamic response of the slope under Z -direction seismic waves is stronger than that under X -direction seismic waves. The deformation and failure were mainly concentrated in the upper part of the slope, which was in good agreement with the field observations. Based on these findings, the deformation and failure mechanism of MBRSs was analyzed by considering both the spatial relationship between the seismogenic fault and the slope, and the propagation characteristics of seismic waves along the slope. The seismic failure mode of MBRSs in the study area was characterized as flexural–tensile failure. This work can provide a reference for post-earthquake disaster investigation, as well as disaster prevention and mitigation, in seismically active regions.

Suggested Citation

  • Xiuhong Zheng & Qihua Zhao & Sheqin Peng & Longke Wu & Yanghao Dou & Kuangyu Chen, 2024. "Analysis of Failure Mechanism of Medium-Steep Bedding Rock Slopes under Seismic Action," Sustainability, MDPI, vol. 16(17), pages 1-21, September.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:17:p:7729-:d:1472068
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/17/7729/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/17/7729/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yu-liang Lin & Wu-ming Leng & Guo-lin Yang & Liang Li & Jun-Sheng Yang, 2015. "Seismic response of embankment slopes with different reinforcing measures in shaking table tests," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 76(2), pages 791-810, March.
    2. Jianxian He & Zhifa Zhan & Shengwen Qi & Chunlei Li & Bowen Zheng & Guoxiang Yang & Songfeng Guo & Xiaolin Huang & Yu Zou & Ning Liang, 2023. "Investigation into a homogenous step-like rock slope response under wide-frequency seismic loads using a large-scale shaking table," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(2), pages 2645-2669, March.
    3. Ross S. Stein, 1999. "The role of stress transfer in earthquake occurrence," Nature, Nature, vol. 402(6762), pages 605-609, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Votsi, I. & Limnios, N. & Tsaklidis, G. & Papadimitriou, E., 2013. "Hidden Markov models revealing the stress field underlying the earthquake generation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(13), pages 2868-2885.
    2. Ferreira, D.S.R. & Ribeiro, J. & Oliveira, P.S.L. & Pimenta, A.R. & Freitas, R.P. & Dutra, R.S. & Papa, A.R.R. & Mendes, J.F.F., 2022. "Spatiotemporal analysis of earthquake occurrence in synthetic and worldwide data," Chaos, Solitons & Fractals, Elsevier, vol. 165(P2).
    3. Andrea Billi & Fabio Corbi & Marco Cuffaro & Barbara Orecchio & Mimmo Palano & Debora Presti & Cristina Totaro, 2024. "Seismic slip channeling along the East Anatolian Fault illuminates long-term supercycle behavior," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    4. Kangqi Liu & Hongyan Liu, 2022. "Simulation of the earthquake-induced soil-rock mixed accumulation body sliding movement using discrete–continuous coupled approach," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 114(2), pages 2087-2108, November.
    5. Habtemicael, Semere & SenGupta, Indranil, 2014. "Ornstein–Uhlenbeck processes for geophysical data analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 399(C), pages 147-156.
    6. Hongyu Yu & Rebecca M. Harrington & Honn Kao & Yajing Liu & Bei Wang, 2021. "Fluid-injection-induced earthquakes characterized by hybrid-frequency waveforms manifest the transition from aseismic to seismic slip," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    7. Irene Votsi & Nikolaos Limnios & George Tsaklidis & Eleftheria Papadimitriou, 2012. "Estimation of the Expected Number of Earthquake Occurrences Based on Semi-Markov Models," Methodology and Computing in Applied Probability, Springer, vol. 14(3), pages 685-703, September.
    8. Lingbin Meng & Jing Zheng & Ruizhao Yang & Suping Peng & Yuan Sun & Jingyu Xie & Dewei Li, 2023. "Microseismic Monitoring Technology Developments and Prospects in CCUS Injection Engineering," Energies, MDPI, vol. 16(7), pages 1-21, March.
    9. Michael Hodge & Juliet Biggs & Katsuichiro Goda & Willy Aspinall, 2015. "Assessing infrequent large earthquakes using geomorphology and geodesy: the Malawi Rift," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 76(3), pages 1781-1806, April.
    10. Shanshan Liang & Guangwei Zhang & Zhiguo Xu & Jie Liu & Hongwei Li & Jianyu Shi & Yuanze Zhou, 2022. "Aftershocks triggering in a conjugate normal fault zone: a case study of the 2020 MW 5.7 Utah earthquake sequence," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 114(1), pages 1059-1078, October.
    11. G. Babayev & A. Tibaldi & F. Bonali & F. Kadirov, 2014. "Evaluation of earthquake-induced strain in promoting mud eruptions: the case of Shamakhi–Gobustan–Absheron areas, Azerbaijan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 72(2), pages 789-808, June.
    12. Chengli Liu & Thorne Lay & Rongjiang Wang & Tuncay Taymaz & Zujun Xie & Xiong Xiong & Tahir Serkan Irmak & Metin Kahraman & Ceyhun Erman, 2023. "Complex multi-fault rupture and triggering during the 2023 earthquake doublet in southeastern Türkiye," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    13. Konstantinos Leptokaropoulos & Eleftheria Papadimitriou & Beata Orlecka-Sikora & Vasileios Karakostas, 2014. "Forecasting seismicity rates in western Turkey as inferred from earthquake catalog and stressing history," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 73(3), pages 1817-1842, September.
    14. B. Rastogi & Sandeep Aggrawal & Nagabhushan Rao & Pallabee Choudhury, 2013. "Triggered/migrated seismicity due to the 2001 M w 7.7 Bhuj earthquake, Western India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 65(2), pages 1085-1107, January.
    15. Huai-zhong Yu & Jia Cheng & Qing-yong Zhu & Yong-ge Wan, 2011. "Critical sensitivity of load/unload response ratio and stress accumulation before large earthquakes: example of the 2008 Mw7.9 Wenchuan earthquake," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 58(1), pages 251-267, July.
    16. Bilal Saif & Mohammad Tahir & Amir Sultan & Muhammad Tahir Iqbal & Talat Iqbal & Muhammad Ali Shah & Samia Gurmani, 2022. "Triggering mechanisms of Gayari avalanche, Pakistan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 112(3), pages 2361-2383, July.
    17. Bo Shao & Guiting Hou & Jun Shen, 2021. "Inter-episodes earthquake migration in the Bohai-Zhangjiakou Fault Zone, North China: Insights from numerical modeling," PLOS ONE, Public Library of Science, vol. 16(5), pages 1-16, May.
    18. Sanjay K. Prajapati & O. P. Mishra, 2021. "Co-seismic deformation and slip distribution of 5 April 2017 Mashhad, Iran earthquake using InSAR sentinel-1A image: implication to source characterization and future seismogenesis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 105(3), pages 3039-3057, February.
    19. Muhammad Taufiq Rafie & David P. Sahara & Phil R. Cummins & Wahyu Triyoso & Sri Widiyantoro, 2023. "Stress accumulation and earthquake activity on the Great Sumatran Fault, Indonesia," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(3), pages 3401-3425, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:17:p:7729-:d:1472068. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.