IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v104y2020i3d10.1007_s11069-020-04283-3.html
   My bibliography  Save this article

Application of probabilistic method in maximum tsunami height prediction considering stochastic seabed topography

Author

Listed:
  • Zhenhao Zhang

    (Changsha University of Science and Technology)

  • Changchun Luo

    (Changsha University of Science and Technology)

  • Zhenpeng Zhao

    (Changsha University of Science and Technology)

Abstract

Uncertainty is a significant challenge in tsunami hazard analysis. Tsunami heights are affected by complex factors and change constantly during propagation. The heights of tsunami have random characteristics. This study proposes that the water depths (related to seabed topography) are the most important factors that affect tsunami height. But across the globe, a considerable area of seabed topography has not been measured. So it is necessary to use the method of uncertainty to consider the water depth. The Wiener process is utilized to quantify the random changes of the water depth, which can better describe the situation that water depths change in a non-monotonic way. Considering the uncertainty of water depth, a Weiner process-based probabilistic model was established for predicting the maximum tsunami height, which is different from the maximum tsunami height deterministic or stochastic model previously studied with higher prediction efficiency and good prediction accuracy. The probability distribution of maximum tsunami heights was calculated using the stochastic model. The mean value of the maximum tsunami heights was very similar to the average value of 165 actual observations of maximum tsunami heights collected from 1997 to 2017.

Suggested Citation

  • Zhenhao Zhang & Changchun Luo & Zhenpeng Zhao, 2020. "Application of probabilistic method in maximum tsunami height prediction considering stochastic seabed topography," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 104(3), pages 2511-2530, December.
  • Handle: RePEc:spr:nathaz:v:104:y:2020:i:3:d:10.1007_s11069-020-04283-3
    DOI: 10.1007/s11069-020-04283-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-020-04283-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-020-04283-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Durga Rao, K. & Kushwaha, H.S. & Verma, A.K. & Srividya, A., 2007. "Quantification of epistemic and aleatory uncertainties in level-1 probabilistic safety assessment studies," Reliability Engineering and System Safety, Elsevier, vol. 92(7), pages 947-956.
    2. Byung Choi & Efim Pelinovsky & Igor Ryabov & Sung Hong, 2002. "Distribution Functions of Tsunami Wave Heights," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 25(1), pages 1-21, January.
    3. Edward Myers & António Baptista, 2001. "Analysis of Factors Influencing Simulations of the 1993 Hokkaido Nansei-Oki and 1964 Alaska Tsunamis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 23(1), pages 1-28, January.
    4. Eric Geist & Tom Parsons, 2006. "Probabilistic Analysis of Tsunami Hazards," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 37(3), pages 277-314, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Muhammad Muzamil Khan & Bushra Ghaffar & Rasim Shahzad & M. Riaz Khan & Munawar Shah & Ali H. Amin & Sayed M. Eldin & Najam Abbas Naqvi & Rashid Ali, 2022. "Atmospheric Anomalies Associated with the 2021 M w 7.2 Haiti Earthquake Using Machine Learning from Multiple Satellites," Sustainability, MDPI, vol. 14(22), pages 1-17, November.
    2. Singh, Sudhir & Sakkaravarthi, K. & Murugesan, K., 2023. "Lump and soliton on certain spatially-varying backgrounds for an integrable (3+1) dimensional fifth-order nonlinear oceanic wave model," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).
    3. Romulus Costache & Alireza Arabameri & Iulia Costache & Anca Crăciun & Binh Thai Pham, 2022. "New Machine Learning Ensemble for Flood Susceptibility Estimation," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(12), pages 4765-4783, September.
    4. Tingting Cai & Dongmin Yu & Huanan Liu & Fengkai Gao, 2022. "RETRACTED: Computational Analysis of Variational Inequalities Using Mean Extra-Gradient Approach," Mathematics, MDPI, vol. 10(13), pages 1-14, July.
    5. Ali Aldrees, 2021. "Water management in Saudi Arabia: a case study of Makkah Al Mukarramah region," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(9), pages 13650-13666, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jin‐Feng Wang & Lian‐Fa Li, 2008. "Improving Tsunami Warning Systems with Remote Sensing and Geographical Information System Input," Risk Analysis, John Wiley & Sons, vol. 28(6), pages 1653-1668, December.
    2. James Knighton & Luis Bastidas, 2015. "A proposed probabilistic seismic tsunami hazard analysis methodology," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 78(1), pages 699-723, August.
    3. George Priest & Yinglong Zhang & Robert Witter & Kelin Wang & Chris Goldfinger & Laura Stimely, 2014. "Tsunami impact to Washington and northern Oregon from segment ruptures on the southern Cascadia subduction zone," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 72(2), pages 849-870, June.
    4. Mohammad Heidarzadeh & Moharram Pirooz & Nasser Zaker & Ahmet Yalciner, 2009. "Preliminary estimation of the tsunami hazards associated with the Makran subduction zone at the northwestern Indian Ocean," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 48(2), pages 229-243, February.
    5. Mohammad Heidarzadeh & Andrzej Kijko, 2011. "A probabilistic tsunami hazard assessment for the Makran subduction zone at the northwestern Indian Ocean," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 56(3), pages 577-593, March.
    6. Ignacio Barranco & Vicente Gracia & Joan Pau Sierra & Hector Perea & Xavier Gironella, 2017. "Tsunami hazards in the Catalan Coast, a low-intensity seismic activity area," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 88(3), pages 1273-1295, September.
    7. Byung-Ho Kim & Min-Jong Song & Yong-Sik Cho, 2022. "Safety Analysis of a Nuclear Power Plant against Unexpected Tsunamis," Sustainability, MDPI, vol. 14(20), pages 1-20, October.
    8. Anita Grezio & Warner Marzocchi & Laura Sandri & Paolo Gasparini, 2010. "A Bayesian procedure for Probabilistic Tsunami Hazard Assessment," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 53(1), pages 159-174, April.
    9. Andrea Cerase & Lorenzo Cugliari, 2023. "Something Still Remains: Factors Affecting Tsunami Risk Perception on the Coasts Hit by the Reggio Calabria-Messina 1908 Event (Italy)," Sustainability, MDPI, vol. 15(3), pages 1-26, February.
    10. Tu Duong Le Duy & Laurence Dieulle & Dominique Vasseur & Christophe Bérenguer & Mathieu Couplet, 2013. "An alternative comprehensive framework using belief functions for parameter and model uncertainty analysis in nuclear probabilistic risk assessment applications," Journal of Risk and Reliability, , vol. 227(5), pages 471-490, October.
    11. Chae Lim & Jae Bae & Jong Lee & Sung Yoon, 2008. "Propagation characteristics of historical tsunamis that attacked the east coast of Korea," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 47(1), pages 95-118, October.
    12. Sarat Sivaprasad & Cameron A. MacKenzie, 2018. "The Hurwicz Decision Rule’s Relationship to Decision Making with the Triangle and Beta Distributions and Exponential Utility," Decision Analysis, INFORMS, vol. 15(3), pages 139-153, September.
    13. J. Wijetunge, 2010. "Numerical simulation and field survey of inundation due to 2004 Indian Ocean tsunami in Trincomalee, Sri Lanka," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 54(1), pages 177-192, July.
    14. Hyoungsu Park & Daniel T. Cox & Andre R. Barbosa, 2018. "Probabilistic Tsunami Hazard Assessment (PTHA) for resilience assessment of a coastal community," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 94(3), pages 1117-1139, December.
    15. Eric Geist & Uri Brink & Matthew Gove, 2014. "A framework for the probabilistic analysis of meteotsunamis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 74(1), pages 123-142, October.
    16. Amin Rashidi & Zaher Hossein Shomali & Denys Dutykh & Nasser Keshavarz Farajkhah, 2020. "Tsunami hazard assessment in the Makran subduction zone," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 100(2), pages 861-875, January.
    17. George Priest & Chris Goldfinger & Kelin Wang & Robert Witter & Yinglong Zhang & António Baptista, 2010. "Confidence levels for tsunami-inundation limits in northern Oregon inferred from a 10,000-year history of great earthquakes at the Cascadia subduction zone," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 54(1), pages 27-73, July.
    18. David Burbidge & Phil Cummins, 2007. "Assessing the threat to Western Australia from tsunami generated by earthquakes along the Sunda Arc," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 43(3), pages 319-331, December.
    19. Attar, Peter J. & Vedula, Prakash, 2013. "On convergence of moments in uncertainty quantification based on direct quadrature," Reliability Engineering and System Safety, Elsevier, vol. 111(C), pages 119-125.
    20. Gyun Seob Song & Man Cheol Kim, 2021. "Mathematical Formulation and Analytic Solutions for Uncertainty Analysis in Probabilistic Safety Assessment of Nuclear Power Plants," Energies, MDPI, vol. 14(4), pages 1-15, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:104:y:2020:i:3:d:10.1007_s11069-020-04283-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.