IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v111y2013icp119-125.html
   My bibliography  Save this article

On convergence of moments in uncertainty quantification based on direct quadrature

Author

Listed:
  • Attar, Peter J.
  • Vedula, Prakash

Abstract

Theoretical results for the convergence of statistical moments in numerical quadrature based polynomial chaos computational uncertainty quantification are presented in this work. This is accomplished by considering the computation of the moments through a direct numerical quadrature method, which is shown to be equivalent to stochastic collocation. For problems which involve output variables which have a polynomial dependence on the random input variables, lower bound expressions are derived for the number of quadrature points required for convergence of arbitrary order moments. In addition, an error expression is derived for when this lower bound is used for problems which have a higher degree of continuity than what was assumed when the bounds are computed. The theoretical results are demonstrated through a simple random algebraic problem and a nonlinear plate problem. The results presented in this work provide further insight into the widely used polynomial chaos expansion method of uncertainty quantification along with presenting simple expressions which can be used for uncertainty quantification code verification.

Suggested Citation

  • Attar, Peter J. & Vedula, Prakash, 2013. "On convergence of moments in uncertainty quantification based on direct quadrature," Reliability Engineering and System Safety, Elsevier, vol. 111(C), pages 119-125.
  • Handle: RePEc:eee:reensy:v:111:y:2013:i:c:p:119-125
    DOI: 10.1016/j.ress.2012.11.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832012002323
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2012.11.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Borgonovo, E., 2007. "A new uncertainty importance measure," Reliability Engineering and System Safety, Elsevier, vol. 92(6), pages 771-784.
    2. Ratto, M. & Pagano, A. & Young, P.C., 2009. "Non-parametric estimation of conditional moments for sensitivity analysis," Reliability Engineering and System Safety, Elsevier, vol. 94(2), pages 237-243.
    3. Sudret, Bruno, 2008. "Global sensitivity analysis using polynomial chaos expansions," Reliability Engineering and System Safety, Elsevier, vol. 93(7), pages 964-979.
    4. Durga Rao, K. & Kushwaha, H.S. & Verma, A.K. & Srividya, A., 2007. "Quantification of epistemic and aleatory uncertainties in level-1 probabilistic safety assessment studies," Reliability Engineering and System Safety, Elsevier, vol. 92(7), pages 947-956.
    5. Crestaux, Thierry & Le Maıˆtre, Olivier & Martinez, Jean-Marc, 2009. "Polynomial chaos expansion for sensitivity analysis," Reliability Engineering and System Safety, Elsevier, vol. 94(7), pages 1161-1172.
    6. Buzzard, Gregery T., 2012. "Global sensitivity analysis using sparse grid interpolation and polynomial chaos," Reliability Engineering and System Safety, Elsevier, vol. 107(C), pages 82-89.
    7. Prempraneerach, P. & Hover, F.S. & Triantafyllou, M.S. & Karniadakis, G.E., 2010. "Uncertainty quantification in simulations of power systems: Multi-element polynomial chaos methods," Reliability Engineering and System Safety, Elsevier, vol. 95(6), pages 632-646.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Oladyshkin, Sergey & Nowak, Wolfgang, 2018. "Incomplete statistical information limits the utility of high-order polynomial chaos expansions," Reliability Engineering and System Safety, Elsevier, vol. 169(C), pages 137-148.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Brown, S. & Beck, J. & Mahgerefteh, H. & Fraga, E.S., 2013. "Global sensitivity analysis of the impact of impurities on CO2 pipeline failure," Reliability Engineering and System Safety, Elsevier, vol. 115(C), pages 43-54.
    2. Oladyshkin, S. & Nowak, W., 2012. "Data-driven uncertainty quantification using the arbitrary polynomial chaos expansion," Reliability Engineering and System Safety, Elsevier, vol. 106(C), pages 179-190.
    3. Wu, Zeping & Wang, Donghui & Okolo N, Patrick & Hu, Fan & Zhang, Weihua, 2016. "Global sensitivity analysis using a Gaussian Radial Basis Function metamodel," Reliability Engineering and System Safety, Elsevier, vol. 154(C), pages 171-179.
    4. Beccacece, Francesca & Borgonovo, Emanuele & Buzzard, Greg & Cillo, Alessandra & Zionts, Stanley, 2015. "Elicitation of multiattribute value functions through high dimensional model representations: Monotonicity and interactions," European Journal of Operational Research, Elsevier, vol. 246(2), pages 517-527.
    5. Oladyshkin, Sergey & Nowak, Wolfgang, 2018. "Incomplete statistical information limits the utility of high-order polynomial chaos expansions," Reliability Engineering and System Safety, Elsevier, vol. 169(C), pages 137-148.
    6. Palar, Pramudita Satria & Zuhal, Lavi Rizki & Shimoyama, Koji & Tsuchiya, Takeshi, 2018. "Global sensitivity analysis via multi-fidelity polynomial chaos expansion," Reliability Engineering and System Safety, Elsevier, vol. 170(C), pages 175-190.
    7. Daneshkhah, Alireza & Bedford, Tim, 2013. "Probabilistic sensitivity analysis of system availability using Gaussian processes," Reliability Engineering and System Safety, Elsevier, vol. 112(C), pages 82-93.
    8. Cheng, Lei & Lu, Zhenzhou & Zhang, Leigang, 2015. "Application of Rejection Sampling based methodology to variance based parametric sensitivity analysis," Reliability Engineering and System Safety, Elsevier, vol. 142(C), pages 9-18.
    9. Buzzard, Gregery T., 2012. "Global sensitivity analysis using sparse grid interpolation and polynomial chaos," Reliability Engineering and System Safety, Elsevier, vol. 107(C), pages 82-89.
    10. Melito, Gian Marco & Müller, Thomas Stephan & Badeli, Vahid & Ellermann, Katrin & Brenn, Günter & Reinbacher-Köstinger, Alice, 2021. "Sensitivity analysis study on the effect of the fluid mechanics assumptions for the computation of electrical conductivity of flowing human blood," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
    11. Wei, Pengfei & Lu, Zhenzhou & Song, Jingwen, 2015. "Variable importance analysis: A comprehensive review," Reliability Engineering and System Safety, Elsevier, vol. 142(C), pages 399-432.
    12. Borgonovo, Emanuele & Plischke, Elmar, 2016. "Sensitivity analysis: A review of recent advances," European Journal of Operational Research, Elsevier, vol. 248(3), pages 869-887.
    13. Anstett-Collin, F. & Goffart, J. & Mara, T. & Denis-Vidal, L., 2015. "Sensitivity analysis of complex models: Coping with dynamic and static inputs," Reliability Engineering and System Safety, Elsevier, vol. 134(C), pages 268-275.
    14. Haro Sandoval, Eduardo & Anstett-Collin, Floriane & Basset, Michel, 2012. "Sensitivity study of dynamic systems using polynomial chaos," Reliability Engineering and System Safety, Elsevier, vol. 104(C), pages 15-26.
    15. Plischke, Elmar & Borgonovo, Emanuele & Smith, Curtis L., 2013. "Global sensitivity measures from given data," European Journal of Operational Research, Elsevier, vol. 226(3), pages 536-550.
    16. Wu, Zeping & Wang, Wenjie & Wang, Donghui & Zhao, Kun & Zhang, Weihua, 2019. "Global sensitivity analysis using orthogonal augmented radial basis function," Reliability Engineering and System Safety, Elsevier, vol. 185(C), pages 291-302.
    17. Wei, Pengfei & Lu, Zhenzhou & Song, Jingwen, 2015. "Regional and parametric sensitivity analysis of Sobol׳ indices," Reliability Engineering and System Safety, Elsevier, vol. 137(C), pages 87-100.
    18. Xiao, Sinan & Lu, Zhenzhou & Xu, Liyang, 2016. "A new effective screening design for structural sensitivity analysis of failure probability with the epistemic uncertainty," Reliability Engineering and System Safety, Elsevier, vol. 156(C), pages 1-14.
    19. Puppo, L. & Pedroni, N. & Maio, F. Di & Bersano, A. & Bertani, C. & Zio, E., 2021. "A Framework based on Finite Mixture Models and Adaptive Kriging for Characterizing Non-Smooth and Multimodal Failure Regions in a Nuclear Passive Safety System," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    20. Wei, Pengfei & Lu, Zhenzhou & Yuan, Xiukai, 2013. "Monte Carlo simulation for moment-independent sensitivity analysis," Reliability Engineering and System Safety, Elsevier, vol. 110(C), pages 60-67.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:111:y:2013:i:c:p:119-125. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.