IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v92y2007i7p947-956.html
   My bibliography  Save this article

Quantification of epistemic and aleatory uncertainties in level-1 probabilistic safety assessment studies

Author

Listed:
  • Durga Rao, K.
  • Kushwaha, H.S.
  • Verma, A.K.
  • Srividya, A.

Abstract

There will be simplifying assumptions and idealizations in the availability models of complex processes and phenomena. These simplifications and idealizations generate uncertainties which can be classified as aleatory (arising due to randomness) and/or epistemic (due to lack of knowledge). The problem of acknowledging and treating uncertainty is vital for practical usability of reliability analysis results. The distinction of uncertainties is useful for taking the reliability/risk informed decisions with confidence and also for effective management of uncertainty. In level-1 probabilistic safety assessment (PSA) of nuclear power plants (NPP), the current practice is carrying out epistemic uncertainty analysis on the basis of a simple Monte-Carlo simulation by sampling the epistemic variables in the model. However, the aleatory uncertainty is neglected and point estimates of aleatory variables, viz., time to failure and time to repair are considered. Treatment of both types of uncertainties would require a two-phase Monte-Carlo simulation, outer loop samples epistemic variables and inner loop samples aleatory variables. A methodology based on two-phase Monte-Carlo simulation is presented for distinguishing both the kinds of uncertainty in the context of availability/reliability evaluation in level-1 PSA studies of NPP.

Suggested Citation

  • Durga Rao, K. & Kushwaha, H.S. & Verma, A.K. & Srividya, A., 2007. "Quantification of epistemic and aleatory uncertainties in level-1 probabilistic safety assessment studies," Reliability Engineering and System Safety, Elsevier, vol. 92(7), pages 947-956.
  • Handle: RePEc:eee:reensy:v:92:y:2007:i:7:p:947-956
    DOI: 10.1016/j.ress.2006.07.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832006001505
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2006.07.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zio, Enrico & Podofillini, Luca & Zille, Valérie, 2006. "A combination of Monte Carlo simulation and cellular automata for computing the availability of complex network systems," Reliability Engineering and System Safety, Elsevier, vol. 91(2), pages 181-190.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wróbel, Krzysztof & Montewka, Jakub & Kujala, Pentti, 2018. "Towards the development of a system-theoretic model for safety assessment of autonomous merchant vessels," Reliability Engineering and System Safety, Elsevier, vol. 178(C), pages 209-224.
    2. Hu, Lunhu & Kang, Rui & Pan, Xing & Zuo, Dujun, 2020. "Risk assessment of uncertain random system—Level-1 and level-2 joint propagation of uncertainty and probability in fault tree analysis," Reliability Engineering and System Safety, Elsevier, vol. 198(C).
    3. Zhenhao Zhang & Changchun Luo & Zhenpeng Zhao, 2020. "Application of probabilistic method in maximum tsunami height prediction considering stochastic seabed topography," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 104(3), pages 2511-2530, December.
    4. Villanueva, D. & Haftka, R.T. & Sankar, B.V., 2014. "Accounting for future redesign to balance performance and development costs," Reliability Engineering and System Safety, Elsevier, vol. 124(C), pages 56-67.
    5. Attar, Peter J. & Vedula, Prakash, 2013. "On convergence of moments in uncertainty quantification based on direct quadrature," Reliability Engineering and System Safety, Elsevier, vol. 111(C), pages 119-125.
    6. Gyun Seob Song & Man Cheol Kim, 2021. "Mathematical Formulation and Analytic Solutions for Uncertainty Analysis in Probabilistic Safety Assessment of Nuclear Power Plants," Energies, MDPI, vol. 14(4), pages 1-15, February.
    7. Francesco, Di Maio & Matteo, Fumagalli & Carlo, Guerini & Federico, Perotti & Enrico, Zio, 2021. "Time-dependent reliability analysis of the reactor building of a nuclear power plant for accounting of its aging and degradation," Reliability Engineering and System Safety, Elsevier, vol. 205(C).
    8. Arul, A. John & Iyer, N. Kannan & Velusamy, K., 2009. "Adjoint operator approach to functional reliability analysis of passive fluid dynamical systems," Reliability Engineering and System Safety, Elsevier, vol. 94(12), pages 1917-1926.
    9. Sarat Sivaprasad & Cameron A. MacKenzie, 2018. "The Hurwicz Decision Rule’s Relationship to Decision Making with the Triangle and Beta Distributions and Exponential Utility," Decision Analysis, INFORMS, vol. 15(3), pages 139-153, September.
    10. Yoro, Kelvin O. & Daramola, Michael O. & Sekoai, Patrick T. & Wilson, Uwemedimo N. & Eterigho-Ikelegbe, Orevaoghene, 2021. "Update on current approaches, challenges, and prospects of modeling and simulation in renewable and sustainable energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    11. James Knighton & Luis Bastidas, 2015. "A proposed probabilistic seismic tsunami hazard analysis methodology," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 78(1), pages 699-723, August.
    12. Tu Duong Le Duy & Laurence Dieulle & Dominique Vasseur & Christophe Bérenguer & Mathieu Couplet, 2013. "An alternative comprehensive framework using belief functions for parameter and model uncertainty analysis in nuclear probabilistic risk assessment applications," Journal of Risk and Reliability, , vol. 227(5), pages 471-490, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Badami, Marco & Fonti, Antonio & Carpignano, Andrea & Grosso, Daniele, 2018. "Design of district heating networks through an integrated thermo-fluid dynamics and reliability modelling approach," Energy, Elsevier, vol. 144(C), pages 826-838.
    2. Durga Rao, K. & Gopika, V. & Sanyasi Rao, V.V.S. & Kushwaha, H.S. & Verma, A.K. & Srividya, A., 2009. "Dynamic fault tree analysis using Monte Carlo simulation in probabilistic safety assessment," Reliability Engineering and System Safety, Elsevier, vol. 94(4), pages 872-883.
    3. Coit, David W. & Zio, Enrico, 2019. "The evolution of system reliability optimization," Reliability Engineering and System Safety, Elsevier, vol. 192(C).
    4. Patterson, S.A. & Apostolakis, G.E., 2007. "Identification of critical locations across multiple infrastructures for terrorist actions," Reliability Engineering and System Safety, Elsevier, vol. 92(9), pages 1183-1203.
    5. E Zio & M Librizzi & G Sansavini, 2008. "A combined Monte Carlo and cellular automata approach to the unreliability analysis of binary network systems," Journal of Risk and Reliability, , vol. 222(1), pages 31-38, March.
    6. L Podofillini & E Zio, 2008. "Events group risk importance by genetic algorithms," Journal of Risk and Reliability, , vol. 222(3), pages 337-346, September.
    7. Li, Daqing & Zhang, Qiong & Zio, Enrico & Havlin, Shlomo & Kang, Rui, 2015. "Network reliability analysis based on percolation theory," Reliability Engineering and System Safety, Elsevier, vol. 142(C), pages 556-562.
    8. Volkanovski, Andrija & ÄŒepin, Marko & Mavko, Borut, 2009. "Application of the fault tree analysis for assessment of power system reliability," Reliability Engineering and System Safety, Elsevier, vol. 94(6), pages 1116-1127.
    9. P Viveros & E Zio & F Kristjanpoller & A Arata, 2012. "Integrated system reliability and productive capacity analysis of a production line. A case study for a Chilean mining process," Journal of Risk and Reliability, , vol. 226(3), pages 305-317, June.
    10. Vaibhav Gaur & Om Prakash Yadav & Gunjan Soni & Ajay Pal Singh Rathore, 2021. "A literature review on network reliability analysis and its engineering applications," Journal of Risk and Reliability, , vol. 235(2), pages 167-181, April.
    11. Chopade, Pravin & Bikdash, Marwan, 2016. "New centrality measures for assessing smart grid vulnerabilities and predicting brownouts and blackouts," International Journal of Critical Infrastructure Protection, Elsevier, vol. 12(C), pages 29-45.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:92:y:2007:i:7:p:947-956. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.