IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v48y2009i2p229-243.html
   My bibliography  Save this article

Preliminary estimation of the tsunami hazards associated with the Makran subduction zone at the northwestern Indian Ocean

Author

Listed:
  • Mohammad Heidarzadeh
  • Moharram Pirooz
  • Nasser Zaker
  • Ahmet Yalciner

Abstract

We present a preliminary estimation of tsunami hazard associated with the Makran subduction zone (MSZ) at the northwestern Indian Ocean. Makran is one of the two main tsunamigenic zones in the Indian Ocean, which has produced some tsunamis in the past. Northwestern Indian Ocean remains one of the least studied regions in the world in terms of tsunami hazard assessment. Hence, a scenario-based method is employed to provide an estimation of tsunami hazard in this region for the first time. The numerical modeling of tsunami is verified using historical observations of the 1945 Makran tsunami. Then, a number of tsunamis each resulting from a 1945-type earthquake (M w 8.1) and spaced evenly along the MSZ are simulated. The results indicate that by moving a 1945-type earthquake along the MSZ, the southern coasts of Iran and Pakistan will experience the largest waves with heights of between 5 and 7 m, depending on the location of the source. The tsunami will reach a height of about 5 m and 2 m in northern coast of Oman and eastern coast of the United Arab Emirates, respectively. Copyright Springer Science+Business Media B.V. 2009

Suggested Citation

  • Mohammad Heidarzadeh & Moharram Pirooz & Nasser Zaker & Ahmet Yalciner, 2009. "Preliminary estimation of the tsunami hazards associated with the Makran subduction zone at the northwestern Indian Ocean," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 48(2), pages 229-243, February.
  • Handle: RePEc:spr:nathaz:v:48:y:2009:i:2:p:229-243
    DOI: 10.1007/s11069-008-9259-x
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11069-008-9259-x
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11069-008-9259-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Evgueni Kulikov & Alexander Rabinovich & Richard Thomson, 2005. "Estimation of Tsunami Risk for the Coasts of Peru and Northern Chile," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 35(2), pages 185-209, June.
    2. Eric Geist & Tom Parsons, 2006. "Probabilistic Analysis of Tsunami Hazards," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 37(3), pages 277-314, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Onur Onat & Burak Yön & Mehmet Emin Öncü & Sadık Varolgüneş & Abdulhalim Karaşin & Selim Cemalgil, 2022. "Field reconnaissance and structural assessment of the October 30, 2020, Samos, Aegean Sea earthquake: an example of severe damage due to the basin effect," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 112(1), pages 75-117, May.
    2. Shima Madani & Saeedeh Khaleghi & Mahmood Reza Akbarpour Jannat, 2017. "Assessing building vulnerability to tsunami using the PTVA-3 model: A case study of Chabahar Bay, Iran," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 85(1), pages 349-359, January.
    3. Mouloud Hamidatou & Abdulla Almandous & Khalifa Alebri & Badr Alameri & Ali Megahed, 2024. "Deterministic Tsunami Hazard Assessment for the Eastern Coast of the United Arab Emirates: Insights from the Makran Subduction Zone," Sustainability, MDPI, vol. 16(23), pages 1-33, December.
    4. Amanullah Mengal & Katsuichiro Goda & Muhammad Ashraf & Ghulam Murtaza, 2021. "Social vulnerability to seismic-tsunami hazards in district Gwadar, Balochistan, Pakistan," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 108(1), pages 1159-1181, August.
    5. Mohammad Heidarzadeh & Andrzej Kijko, 2011. "A probabilistic tsunami hazard assessment for the Makran subduction zone at the northwestern Indian Ocean," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 56(3), pages 577-593, March.
    6. G. Hoffmann & K. Reicherter & T. Wiatr & C. Grützner & T. Rausch, 2013. "Block and boulder accumulations along the coastline between Fins and Sur (Sultanate of Oman): tsunamigenic remains?," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 65(1), pages 851-873, January.
    7. Ehsan Rastgoftar & Mohsen Soltanpour, 2016. "Study and numerical modeling of 1945 Makran tsunami due to a probable submarine landslide," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 83(2), pages 929-945, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jin‐Feng Wang & Lian‐Fa Li, 2008. "Improving Tsunami Warning Systems with Remote Sensing and Geographical Information System Input," Risk Analysis, John Wiley & Sons, vol. 28(6), pages 1653-1668, December.
    2. Eric Geist & Tom Parsons, 2014. "Undersampling power-law size distributions: effect on the assessment of extreme natural hazards," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 72(2), pages 565-595, June.
    3. R. Jelínek & E. Krausmann & M. González & J. Álvarez-Gómez & J. Birkmann & T. Welle, 2012. "Approaches for tsunami risk assessment and application to the city of Cádiz, Spain," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 60(2), pages 273-293, January.
    4. Mohammad Heidarzadeh & Andrzej Kijko, 2011. "A probabilistic tsunami hazard assessment for the Makran subduction zone at the northwestern Indian Ocean," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 56(3), pages 577-593, March.
    5. Ignacio Barranco & Vicente Gracia & Joan Pau Sierra & Hector Perea & Xavier Gironella, 2017. "Tsunami hazards in the Catalan Coast, a low-intensity seismic activity area," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 88(3), pages 1273-1295, September.
    6. Byung-Ho Kim & Min-Jong Song & Yong-Sik Cho, 2022. "Safety Analysis of a Nuclear Power Plant against Unexpected Tsunamis," Sustainability, MDPI, vol. 14(20), pages 1-20, October.
    7. Anita Grezio & Warner Marzocchi & Laura Sandri & Paolo Gasparini, 2010. "A Bayesian procedure for Probabilistic Tsunami Hazard Assessment," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 53(1), pages 159-174, April.
    8. Andrea Cerase & Lorenzo Cugliari, 2023. "Something Still Remains: Factors Affecting Tsunami Risk Perception on the Coasts Hit by the Reggio Calabria-Messina 1908 Event (Italy)," Sustainability, MDPI, vol. 15(3), pages 1-26, February.
    9. J. Wijetunge, 2010. "Numerical simulation and field survey of inundation due to 2004 Indian Ocean tsunami in Trincomalee, Sri Lanka," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 54(1), pages 177-192, July.
    10. Hyoungsu Park & Daniel T. Cox & Andre R. Barbosa, 2018. "Probabilistic Tsunami Hazard Assessment (PTHA) for resilience assessment of a coastal community," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 94(3), pages 1117-1139, December.
    11. Eric Geist & Uri Brink & Matthew Gove, 2014. "A framework for the probabilistic analysis of meteotsunamis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 74(1), pages 123-142, October.
    12. Amin Rashidi & Zaher Hossein Shomali & Denys Dutykh & Nasser Keshavarz Farajkhah, 2020. "Tsunami hazard assessment in the Makran subduction zone," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 100(2), pages 861-875, January.
    13. David Burbidge & Phil Cummins, 2007. "Assessing the threat to Western Australia from tsunami generated by earthquakes along the Sunda Arc," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 43(3), pages 319-331, December.
    14. Sascha Brune & Stefan Ladage & Andrey Babeyko & Christian Müller & Heidrun Kopp & Stephan Sobolev, 2010. "Submarine landslides at the eastern Sunda margin: observations and tsunami impact assessment," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 54(2), pages 547-562, August.
    15. Saurabh Prabhu & Mohammad Javanbarg & Marc Lehmann & Sez Atamturktur, 2019. "Multi-peril risk assessment for business downtime of industrial facilities," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 97(3), pages 1327-1356, July.
    16. Carl Harbitz & Finn Løvholt & Hilmar Bungum, 2014. "Submarine landslide tsunamis: how extreme and how likely?," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 72(3), pages 1341-1374, July.
    17. Virginia Silbergleit & Claudia Prezzi, 2012. "Statistics of major Chilean earthquakes recurrence," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 62(2), pages 445-458, June.
    18. Lucinda Leonard & Garry Rogers & Stéphane Mazzotti, 2014. "Tsunami hazard assessment of Canada," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 70(1), pages 237-274, January.
    19. James Knighton & Luis Bastidas, 2015. "A proposed probabilistic seismic tsunami hazard analysis methodology," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 78(1), pages 699-723, August.
    20. Nishino, Tomoaki & Miyashita, Takuya & Mori, Nobuhito, 2024. "Methodology for probabilistic tsunami-triggered oil spill fire hazard assessment based on Natech cascading disaster modeling," Reliability Engineering and System Safety, Elsevier, vol. 242(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:48:y:2009:i:2:p:229-243. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.